mirror of
https://github.com/Laupetin/OpenAssetTools.git
synced 2025-06-11 15:28:11 -05:00
Import code from previous AssetBuilder version
This commit is contained in:
328
thirdparty/libtomcrypt/ciphers/noekeon.c
vendored
Normal file
328
thirdparty/libtomcrypt/ciphers/noekeon.c
vendored
Normal file
@ -0,0 +1,328 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
||||
*
|
||||
* LibTomCrypt is a library that provides various cryptographic
|
||||
* algorithms in a highly modular and flexible manner.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*/
|
||||
/**
|
||||
@file noekeon.c
|
||||
Implementation of the Noekeon block cipher by Tom St Denis
|
||||
*/
|
||||
#include "tomcrypt.h"
|
||||
|
||||
#ifdef LTC_NOEKEON
|
||||
|
||||
const struct ltc_cipher_descriptor noekeon_desc =
|
||||
{
|
||||
"noekeon",
|
||||
16,
|
||||
16, 16, 16, 16,
|
||||
&noekeon_setup,
|
||||
&noekeon_ecb_encrypt,
|
||||
&noekeon_ecb_decrypt,
|
||||
&noekeon_test,
|
||||
&noekeon_done,
|
||||
&noekeon_keysize,
|
||||
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
|
||||
};
|
||||
|
||||
static const ulong32 RC[] = {
|
||||
0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
|
||||
0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
|
||||
0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
|
||||
0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
|
||||
0x000000d4UL
|
||||
};
|
||||
|
||||
#define kTHETA(a, b, c, d) \
|
||||
temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
|
||||
b ^= temp; d ^= temp; \
|
||||
temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
|
||||
a ^= temp; c ^= temp;
|
||||
|
||||
#define THETA(k, a, b, c, d) \
|
||||
temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
|
||||
b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
|
||||
temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
|
||||
a ^= temp ^ k[0]; c ^= temp ^ k[2];
|
||||
|
||||
#define GAMMA(a, b, c, d) \
|
||||
b ^= ~(d|c); \
|
||||
a ^= c&b; \
|
||||
temp = d; d = a; a = temp;\
|
||||
c ^= a ^ b ^ d; \
|
||||
b ^= ~(d|c); \
|
||||
a ^= c&b;
|
||||
|
||||
#define PI1(a, b, c, d) \
|
||||
b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2);
|
||||
|
||||
#define PI2(a, b, c, d) \
|
||||
b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2);
|
||||
|
||||
/**
|
||||
Initialize the Noekeon block cipher
|
||||
@param key The symmetric key you wish to pass
|
||||
@param keylen The key length in bytes
|
||||
@param num_rounds The number of rounds desired (0 for default)
|
||||
@param skey The key in as scheduled by this function.
|
||||
@return CRYPT_OK if successful
|
||||
*/
|
||||
int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
|
||||
{
|
||||
ulong32 temp;
|
||||
|
||||
LTC_ARGCHK(key != NULL);
|
||||
LTC_ARGCHK(skey != NULL);
|
||||
|
||||
if (keylen != 16) {
|
||||
return CRYPT_INVALID_KEYSIZE;
|
||||
}
|
||||
|
||||
if (num_rounds != 16 && num_rounds != 0) {
|
||||
return CRYPT_INVALID_ROUNDS;
|
||||
}
|
||||
|
||||
LOAD32H(skey->noekeon.K[0],&key[0]);
|
||||
LOAD32H(skey->noekeon.K[1],&key[4]);
|
||||
LOAD32H(skey->noekeon.K[2],&key[8]);
|
||||
LOAD32H(skey->noekeon.K[3],&key[12]);
|
||||
|
||||
LOAD32H(skey->noekeon.dK[0],&key[0]);
|
||||
LOAD32H(skey->noekeon.dK[1],&key[4]);
|
||||
LOAD32H(skey->noekeon.dK[2],&key[8]);
|
||||
LOAD32H(skey->noekeon.dK[3],&key[12]);
|
||||
|
||||
kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
|
||||
|
||||
return CRYPT_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts a block of text with Noekeon
|
||||
@param pt The input plaintext (16 bytes)
|
||||
@param ct The output ciphertext (16 bytes)
|
||||
@param skey The key as scheduled
|
||||
@return CRYPT_OK if successful
|
||||
*/
|
||||
#ifdef LTC_CLEAN_STACK
|
||||
static int _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
|
||||
#else
|
||||
int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
|
||||
#endif
|
||||
{
|
||||
ulong32 a,b,c,d,temp;
|
||||
int r;
|
||||
|
||||
LTC_ARGCHK(skey != NULL);
|
||||
LTC_ARGCHK(pt != NULL);
|
||||
LTC_ARGCHK(ct != NULL);
|
||||
|
||||
LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
|
||||
LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
|
||||
|
||||
#define ROUND(i) \
|
||||
a ^= RC[i]; \
|
||||
THETA(skey->noekeon.K, a,b,c,d); \
|
||||
PI1(a,b,c,d); \
|
||||
GAMMA(a,b,c,d); \
|
||||
PI2(a,b,c,d);
|
||||
|
||||
for (r = 0; r < 16; ++r) {
|
||||
ROUND(r);
|
||||
}
|
||||
|
||||
#undef ROUND
|
||||
|
||||
a ^= RC[16];
|
||||
THETA(skey->noekeon.K, a, b, c, d);
|
||||
|
||||
STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
|
||||
STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
|
||||
|
||||
return CRYPT_OK;
|
||||
}
|
||||
|
||||
#ifdef LTC_CLEAN_STACK
|
||||
int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
|
||||
{
|
||||
int err = _noekeon_ecb_encrypt(pt, ct, skey);
|
||||
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
Decrypts a block of text with Noekeon
|
||||
@param ct The input ciphertext (16 bytes)
|
||||
@param pt The output plaintext (16 bytes)
|
||||
@param skey The key as scheduled
|
||||
@return CRYPT_OK if successful
|
||||
*/
|
||||
#ifdef LTC_CLEAN_STACK
|
||||
static int _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
|
||||
#else
|
||||
int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
|
||||
#endif
|
||||
{
|
||||
ulong32 a,b,c,d, temp;
|
||||
int r;
|
||||
|
||||
LTC_ARGCHK(skey != NULL);
|
||||
LTC_ARGCHK(pt != NULL);
|
||||
LTC_ARGCHK(ct != NULL);
|
||||
|
||||
LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
|
||||
LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
|
||||
|
||||
|
||||
#define ROUND(i) \
|
||||
THETA(skey->noekeon.dK, a,b,c,d); \
|
||||
a ^= RC[i]; \
|
||||
PI1(a,b,c,d); \
|
||||
GAMMA(a,b,c,d); \
|
||||
PI2(a,b,c,d);
|
||||
|
||||
for (r = 16; r > 0; --r) {
|
||||
ROUND(r);
|
||||
}
|
||||
|
||||
#undef ROUND
|
||||
|
||||
THETA(skey->noekeon.dK, a,b,c,d);
|
||||
a ^= RC[0];
|
||||
STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
|
||||
STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
|
||||
return CRYPT_OK;
|
||||
}
|
||||
|
||||
#ifdef LTC_CLEAN_STACK
|
||||
int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
|
||||
{
|
||||
int err = _noekeon_ecb_decrypt(ct, pt, skey);
|
||||
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
Performs a self-test of the Noekeon block cipher
|
||||
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
|
||||
*/
|
||||
int noekeon_test(void)
|
||||
{
|
||||
#ifndef LTC_TEST
|
||||
return CRYPT_NOP;
|
||||
#else
|
||||
static const struct {
|
||||
int keylen;
|
||||
unsigned char key[16], pt[16], ct[16];
|
||||
} tests[] = {
|
||||
{
|
||||
16,
|
||||
{ 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 },
|
||||
{ 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 },
|
||||
{ 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 }
|
||||
},
|
||||
{
|
||||
16,
|
||||
{ 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 },
|
||||
{ 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 },
|
||||
{ 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 }
|
||||
},
|
||||
{
|
||||
16,
|
||||
{ 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 },
|
||||
{ 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F },
|
||||
{ 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D }
|
||||
},
|
||||
{
|
||||
16,
|
||||
{ 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E },
|
||||
{ 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE },
|
||||
{ 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF }
|
||||
},
|
||||
{
|
||||
16,
|
||||
{ 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B },
|
||||
{ 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE },
|
||||
{ 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 }
|
||||
},
|
||||
{
|
||||
16,
|
||||
{ 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF },
|
||||
{ 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 },
|
||||
{ 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 }
|
||||
},
|
||||
{
|
||||
16,
|
||||
{ 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 },
|
||||
{ 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 },
|
||||
{ 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 }
|
||||
},
|
||||
{
|
||||
16,
|
||||
{ 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D },
|
||||
{ 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 },
|
||||
{ 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F }
|
||||
}
|
||||
};
|
||||
symmetric_key key;
|
||||
unsigned char tmp[2][16];
|
||||
int err, i, y;
|
||||
|
||||
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
|
||||
zeromem(&key, sizeof(key));
|
||||
if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
|
||||
return err;
|
||||
}
|
||||
|
||||
noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
|
||||
noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
|
||||
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) ||
|
||||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) {
|
||||
return CRYPT_FAIL_TESTVECTOR;
|
||||
}
|
||||
|
||||
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
||||
for (y = 0; y < 16; y++) tmp[0][y] = 0;
|
||||
for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
|
||||
for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
|
||||
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
||||
}
|
||||
return CRYPT_OK;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Terminate the context
|
||||
@param skey The scheduled key
|
||||
*/
|
||||
void noekeon_done(symmetric_key *skey)
|
||||
{
|
||||
LTC_UNUSED_PARAM(skey);
|
||||
}
|
||||
|
||||
/**
|
||||
Gets suitable key size
|
||||
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
|
||||
@return CRYPT_OK if the input key size is acceptable.
|
||||
*/
|
||||
int noekeon_keysize(int *keysize)
|
||||
{
|
||||
LTC_ARGCHK(keysize != NULL);
|
||||
if (*keysize < 16) {
|
||||
return CRYPT_INVALID_KEYSIZE;
|
||||
} else {
|
||||
*keysize = 16;
|
||||
return CRYPT_OK;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/* ref: HEAD -> master, tag: v1.18.2 */
|
||||
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
|
||||
/* commit time: 2018-07-01 22:49:01 +0200 */
|
Reference in New Issue
Block a user