Import code from previous AssetBuilder version

This commit is contained in:
Jan
2019-09-24 10:45:09 +02:00
parent 5609557516
commit 0d8432d4f7
919 changed files with 154412 additions and 26 deletions

125
thirdparty/libtomcrypt/pk/ecc/ecc.c vendored Normal file
View File

@ -0,0 +1,125 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/* This holds the key settings. ***MUST*** be organized by size from smallest to largest. */
const ltc_ecc_set_type ltc_ecc_sets[] = {
#ifdef LTC_ECC112
{
14,
"SECP112R1",
"DB7C2ABF62E35E668076BEAD208B",
"659EF8BA043916EEDE8911702B22",
"DB7C2ABF62E35E7628DFAC6561C5",
"09487239995A5EE76B55F9C2F098",
"A89CE5AF8724C0A23E0E0FF77500"
},
#endif
#ifdef LTC_ECC128
{
16,
"SECP128R1",
"FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF",
"E87579C11079F43DD824993C2CEE5ED3",
"FFFFFFFE0000000075A30D1B9038A115",
"161FF7528B899B2D0C28607CA52C5B86",
"CF5AC8395BAFEB13C02DA292DDED7A83",
},
#endif
#ifdef LTC_ECC160
{
20,
"SECP160R1",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF",
"1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45",
"0100000000000000000001F4C8F927AED3CA752257",
"4A96B5688EF573284664698968C38BB913CBFC82",
"23A628553168947D59DCC912042351377AC5FB32",
},
#endif
#ifdef LTC_ECC192
{
24,
"ECC-192",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
"64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1",
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831",
"188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012",
"7192B95FFC8DA78631011ED6B24CDD573F977A11E794811",
},
#endif
#ifdef LTC_ECC224
{
28,
"ECC-224",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001",
"B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D",
"B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21",
"BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34",
},
#endif
#ifdef LTC_ECC256
{
32,
"ECC-256",
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF",
"5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B",
"FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551",
"6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296",
"4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5",
},
#endif
#ifdef LTC_ECC384
{
48,
"ECC-384",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF",
"B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973",
"AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7",
"3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F",
},
#endif
#ifdef LTC_ECC521
{
66,
"ECC-521",
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
"51953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00",
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409",
"C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66",
"11839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650",
},
#endif
{
0,
NULL, NULL, NULL, NULL, NULL, NULL
}
};
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,77 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_ansi_x963_export.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/** ECC X9.63 (Sec. 4.3.6) uncompressed export
@param key Key to export
@param out [out] destination of export
@param outlen [in/out] Length of destination and final output size
Return CRYPT_OK on success
*/
int ecc_ansi_x963_export(ecc_key *key, unsigned char *out, unsigned long *outlen)
{
unsigned char buf[ECC_BUF_SIZE];
unsigned long numlen, xlen, ylen;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(outlen != NULL);
if (ltc_ecc_is_valid_idx(key->idx) == 0) {
return CRYPT_INVALID_ARG;
}
numlen = key->dp->size;
xlen = mp_unsigned_bin_size(key->pubkey.x);
ylen = mp_unsigned_bin_size(key->pubkey.y);
if (xlen > numlen || ylen > numlen || sizeof(buf) < numlen) {
return CRYPT_BUFFER_OVERFLOW;
}
if (*outlen < (1 + 2*numlen)) {
*outlen = 1 + 2*numlen;
return CRYPT_BUFFER_OVERFLOW;
}
LTC_ARGCHK(out != NULL);
/* store byte 0x04 */
out[0] = 0x04;
/* pad and store x */
zeromem(buf, sizeof(buf));
mp_to_unsigned_bin(key->pubkey.x, buf + (numlen - xlen));
XMEMCPY(out+1, buf, numlen);
/* pad and store y */
zeromem(buf, sizeof(buf));
mp_to_unsigned_bin(key->pubkey.y, buf + (numlen - ylen));
XMEMCPY(out+1+numlen, buf, numlen);
*outlen = 1 + 2*numlen;
return CRYPT_OK;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,102 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_ansi_x963_import.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/** Import an ANSI X9.63 format public key
@param in The input data to read
@param inlen The length of the input data
@param key [out] destination to store imported key \
*/
int ecc_ansi_x963_import(const unsigned char *in, unsigned long inlen, ecc_key *key)
{
return ecc_ansi_x963_import_ex(in, inlen, key, NULL);
}
int ecc_ansi_x963_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, ltc_ecc_set_type *dp)
{
int x, err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(key != NULL);
/* must be odd */
if ((inlen & 1) == 0) {
return CRYPT_INVALID_ARG;
}
/* init key */
if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != CRYPT_OK) {
return CRYPT_MEM;
}
/* check for 4, 6 or 7 */
if (in[0] != 4 && in[0] != 6 && in[0] != 7) {
err = CRYPT_INVALID_PACKET;
goto error;
}
/* read data */
if ((err = mp_read_unsigned_bin(key->pubkey.x, (unsigned char *)in+1, (inlen-1)>>1)) != CRYPT_OK) {
goto error;
}
if ((err = mp_read_unsigned_bin(key->pubkey.y, (unsigned char *)in+1+((inlen-1)>>1), (inlen-1)>>1)) != CRYPT_OK) {
goto error;
}
if ((err = mp_set(key->pubkey.z, 1)) != CRYPT_OK) { goto error; }
if (dp == NULL) {
/* determine the idx */
for (x = 0; ltc_ecc_sets[x].size != 0; x++) {
if ((unsigned)ltc_ecc_sets[x].size >= ((inlen-1)>>1)) {
break;
}
}
if (ltc_ecc_sets[x].size == 0) {
err = CRYPT_INVALID_PACKET;
goto error;
}
/* set the idx */
key->idx = x;
key->dp = &ltc_ecc_sets[x];
} else {
if (((inlen-1)>>1) != (unsigned long) dp->size) {
err = CRYPT_INVALID_PACKET;
goto error;
}
key->idx = -1;
key->dp = dp;
}
key->type = PK_PUBLIC;
/* we're done */
return CRYPT_OK;
error:
mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,149 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_decrypt_key.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Decrypt an ECC encrypted key
@param in The ciphertext
@param inlen The length of the ciphertext (octets)
@param out [out] The plaintext
@param outlen [in/out] The max size and resulting size of the plaintext
@param key The corresponding private ECC key
@return CRYPT_OK if successful
*/
int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
ecc_key *key)
{
unsigned char *ecc_shared, *skey, *pub_expt;
unsigned long x, y;
unsigned long hashOID[32] = { 0 };
int hash, err;
ecc_key pubkey;
ltc_asn1_list decode[3];
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* right key type? */
if (key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
/* decode to find out hash */
LTC_SET_ASN1(decode, 0, LTC_ASN1_OBJECT_IDENTIFIER, hashOID, sizeof(hashOID)/sizeof(hashOID[0]));
err = der_decode_sequence(in, inlen, decode, 1);
if (err != CRYPT_OK && err != CRYPT_INPUT_TOO_LONG) {
return err;
}
hash = find_hash_oid(hashOID, decode[0].size);
if (hash_is_valid(hash) != CRYPT_OK) {
return CRYPT_INVALID_PACKET;
}
/* we now have the hash! */
/* allocate memory */
pub_expt = XMALLOC(ECC_BUF_SIZE);
ecc_shared = XMALLOC(ECC_BUF_SIZE);
skey = XMALLOC(MAXBLOCKSIZE);
if (pub_expt == NULL || ecc_shared == NULL || skey == NULL) {
if (pub_expt != NULL) {
XFREE(pub_expt);
}
if (ecc_shared != NULL) {
XFREE(ecc_shared);
}
if (skey != NULL) {
XFREE(skey);
}
return CRYPT_MEM;
}
LTC_SET_ASN1(decode, 1, LTC_ASN1_OCTET_STRING, pub_expt, ECC_BUF_SIZE);
LTC_SET_ASN1(decode, 2, LTC_ASN1_OCTET_STRING, skey, MAXBLOCKSIZE);
/* read the structure in now */
if ((err = der_decode_sequence(in, inlen, decode, 3)) != CRYPT_OK) {
goto LBL_ERR;
}
/* import ECC key from packet */
if ((err = ecc_import(decode[1].data, decode[1].size, &pubkey)) != CRYPT_OK) {
goto LBL_ERR;
}
/* make shared key */
x = ECC_BUF_SIZE;
if ((err = ecc_shared_secret(key, &pubkey, ecc_shared, &x)) != CRYPT_OK) {
ecc_free(&pubkey);
goto LBL_ERR;
}
ecc_free(&pubkey);
y = MIN(ECC_BUF_SIZE, MAXBLOCKSIZE);
if ((err = hash_memory(hash, ecc_shared, x, ecc_shared, &y)) != CRYPT_OK) {
goto LBL_ERR;
}
/* ensure the hash of the shared secret is at least as big as the encrypt itself */
if (decode[2].size > y) {
err = CRYPT_INVALID_PACKET;
goto LBL_ERR;
}
/* avoid buffer overflow */
if (*outlen < decode[2].size) {
*outlen = decode[2].size;
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
/* Decrypt the key */
for (x = 0; x < decode[2].size; x++) {
out[x] = skey[x] ^ ecc_shared[x];
}
*outlen = x;
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(pub_expt, ECC_BUF_SIZE);
zeromem(ecc_shared, ECC_BUF_SIZE);
zeromem(skey, MAXBLOCKSIZE);
#endif
XFREE(pub_expt);
XFREE(ecc_shared);
XFREE(skey);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,134 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_encrypt_key.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Encrypt a symmetric key with ECC
@param in The symmetric key you want to encrypt
@param inlen The length of the key to encrypt (octets)
@param out [out] The destination for the ciphertext
@param outlen [in/out] The max size and resulting size of the ciphertext
@param prng An active PRNG state
@param wprng The index of the PRNG you wish to use
@param hash The index of the hash you want to use
@param key The ECC key you want to encrypt to
@return CRYPT_OK if successful
*/
int ecc_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
ecc_key *key)
{
unsigned char *pub_expt, *ecc_shared, *skey;
ecc_key pubkey;
unsigned long x, y, pubkeysize;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* check that wprng/cipher/hash are not invalid */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
if (inlen > hash_descriptor[hash].hashsize) {
return CRYPT_INVALID_HASH;
}
/* make a random key and export the public copy */
if ((err = ecc_make_key_ex(prng, wprng, &pubkey, key->dp)) != CRYPT_OK) {
return err;
}
pub_expt = XMALLOC(ECC_BUF_SIZE);
ecc_shared = XMALLOC(ECC_BUF_SIZE);
skey = XMALLOC(MAXBLOCKSIZE);
if (pub_expt == NULL || ecc_shared == NULL || skey == NULL) {
if (pub_expt != NULL) {
XFREE(pub_expt);
}
if (ecc_shared != NULL) {
XFREE(ecc_shared);
}
if (skey != NULL) {
XFREE(skey);
}
ecc_free(&pubkey);
return CRYPT_MEM;
}
pubkeysize = ECC_BUF_SIZE;
if ((err = ecc_export(pub_expt, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) {
ecc_free(&pubkey);
goto LBL_ERR;
}
/* make random key */
x = ECC_BUF_SIZE;
if ((err = ecc_shared_secret(&pubkey, key, ecc_shared, &x)) != CRYPT_OK) {
ecc_free(&pubkey);
goto LBL_ERR;
}
ecc_free(&pubkey);
y = MAXBLOCKSIZE;
if ((err = hash_memory(hash, ecc_shared, x, skey, &y)) != CRYPT_OK) {
goto LBL_ERR;
}
/* Encrypt key */
for (x = 0; x < inlen; x++) {
skey[x] ^= in[x];
}
err = der_encode_sequence_multi(out, outlen,
LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash].OIDlen, hash_descriptor[hash].OID,
LTC_ASN1_OCTET_STRING, pubkeysize, pub_expt,
LTC_ASN1_OCTET_STRING, inlen, skey,
LTC_ASN1_EOL, 0UL, NULL);
LBL_ERR:
#ifdef LTC_CLEAN_STACK
/* clean up */
zeromem(pub_expt, ECC_BUF_SIZE);
zeromem(ecc_shared, ECC_BUF_SIZE);
zeromem(skey, MAXBLOCKSIZE);
#endif
XFREE(skey);
XFREE(ecc_shared);
XFREE(pub_expt);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,80 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_export.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Export an ECC key as a binary packet
@param out [out] Destination for the key
@param outlen [in/out] Max size and resulting size of the exported key
@param type The type of key you want to export (PK_PRIVATE or PK_PUBLIC)
@param key The key to export
@return CRYPT_OK if successful
*/
int ecc_export(unsigned char *out, unsigned long *outlen, int type, ecc_key *key)
{
int err;
unsigned char flags[1];
unsigned long key_size;
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* type valid? */
if (key->type != PK_PRIVATE && type == PK_PRIVATE) {
return CRYPT_PK_TYPE_MISMATCH;
}
if (ltc_ecc_is_valid_idx(key->idx) == 0) {
return CRYPT_INVALID_ARG;
}
/* we store the NIST byte size */
key_size = key->dp->size;
if (type == PK_PRIVATE) {
flags[0] = 1;
err = der_encode_sequence_multi(out, outlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, key->pubkey.y,
LTC_ASN1_INTEGER, 1UL, key->k,
LTC_ASN1_EOL, 0UL, NULL);
} else {
flags[0] = 0;
err = der_encode_sequence_multi(out, outlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, key->pubkey.y,
LTC_ASN1_EOL, 0UL, NULL);
}
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,38 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_free.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Free an ECC key from memory
@param key The key you wish to free
*/
void ecc_free(ecc_key *key)
{
LTC_ARGCHKVD(key != NULL);
mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL);
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,42 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_get_size.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Get the size of an ECC key
@param key The key to get the size of
@return The size (octets) of the key or INT_MAX on error
*/
int ecc_get_size(ecc_key *key)
{
LTC_ARGCHK(key != NULL);
if (ltc_ecc_is_valid_idx(key->idx))
return key->dp->size;
else
return INT_MAX; /* large value known to cause it to fail when passed to ecc_make_key() */
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,174 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_import.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
static int _is_point(ecc_key *key)
{
void *prime, *b, *t1, *t2;
int err;
if ((err = mp_init_multi(&prime, &b, &t1, &t2, NULL)) != CRYPT_OK) {
return err;
}
/* load prime and b */
if ((err = mp_read_radix(prime, key->dp->prime, 16)) != CRYPT_OK) { goto error; }
if ((err = mp_read_radix(b, key->dp->B, 16)) != CRYPT_OK) { goto error; }
/* compute y^2 */
if ((err = mp_sqr(key->pubkey.y, t1)) != CRYPT_OK) { goto error; }
/* compute x^3 */
if ((err = mp_sqr(key->pubkey.x, t2)) != CRYPT_OK) { goto error; }
if ((err = mp_mod(t2, prime, t2)) != CRYPT_OK) { goto error; }
if ((err = mp_mul(key->pubkey.x, t2, t2)) != CRYPT_OK) { goto error; }
/* compute y^2 - x^3 */
if ((err = mp_sub(t1, t2, t1)) != CRYPT_OK) { goto error; }
/* compute y^2 - x^3 + 3x */
if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; }
if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; }
if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; }
if ((err = mp_mod(t1, prime, t1)) != CRYPT_OK) { goto error; }
while (mp_cmp_d(t1, 0) == LTC_MP_LT) {
if ((err = mp_add(t1, prime, t1)) != CRYPT_OK) { goto error; }
}
while (mp_cmp(t1, prime) != LTC_MP_LT) {
if ((err = mp_sub(t1, prime, t1)) != CRYPT_OK) { goto error; }
}
/* compare to b */
if (mp_cmp(t1, b) != LTC_MP_EQ) {
err = CRYPT_INVALID_PACKET;
} else {
err = CRYPT_OK;
}
error:
mp_clear_multi(prime, b, t1, t2, NULL);
return err;
}
/**
Import an ECC key from a binary packet
@param in The packet to import
@param inlen The length of the packet
@param key [out] The destination of the import
@return CRYPT_OK if successful, upon error all allocated memory will be freed
*/
int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key)
{
return ecc_import_ex(in, inlen, key, NULL);
}
/**
Import an ECC key from a binary packet, using user supplied domain params rather than one of the NIST ones
@param in The packet to import
@param inlen The length of the packet
@param key [out] The destination of the import
@param dp pointer to user supplied params; must be the same as the params used when exporting
@return CRYPT_OK if successful, upon error all allocated memory will be freed
*/
int ecc_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, const ltc_ecc_set_type *dp)
{
unsigned long key_size;
unsigned char flags[1];
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(ltc_mp.name != NULL);
/* init key */
if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != CRYPT_OK) {
return CRYPT_MEM;
}
/* find out what type of key it is */
err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_EOL, 0UL, NULL);
if (err != CRYPT_OK && err != CRYPT_INPUT_TOO_LONG) {
goto done;
}
if (flags[0] == 1) {
/* private key */
key->type = PK_PRIVATE;
if ((err = der_decode_sequence_multi(in, inlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, key->pubkey.y,
LTC_ASN1_INTEGER, 1UL, key->k,
LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {
goto done;
}
} else if (flags[0] == 0) {
/* public key */
key->type = PK_PUBLIC;
if ((err = der_decode_sequence_multi(in, inlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, key->pubkey.y,
LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {
goto done;
}
}
else {
err = CRYPT_INVALID_PACKET;
goto done;
}
if (dp == NULL) {
/* find the idx */
for (key->idx = 0; ltc_ecc_sets[key->idx].size && (unsigned long)ltc_ecc_sets[key->idx].size != key_size; ++key->idx);
if (ltc_ecc_sets[key->idx].size == 0) {
err = CRYPT_INVALID_PACKET;
goto done;
}
key->dp = &ltc_ecc_sets[key->idx];
} else {
key->idx = -1;
key->dp = dp;
}
/* set z */
if ((err = mp_set(key->pubkey.z, 1)) != CRYPT_OK) { goto done; }
/* is it a point on the curve? */
if ((err = _is_point(key)) != CRYPT_OK) {
goto done;
}
/* we're good */
return CRYPT_OK;
done:
mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,128 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_make_key.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Make a new ECC key
@param prng An active PRNG state
@param wprng The index of the PRNG you wish to use
@param keysize The keysize for the new key (in octets from 20 to 65 bytes)
@param key [out] Destination of the newly created key
@return CRYPT_OK if successful, upon error all allocated memory will be freed
*/
int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key)
{
int x, err;
/* find key size */
for (x = 0; (keysize > ltc_ecc_sets[x].size) && (ltc_ecc_sets[x].size != 0); x++);
keysize = ltc_ecc_sets[x].size;
if (keysize > ECC_MAXSIZE || ltc_ecc_sets[x].size == 0) {
return CRYPT_INVALID_KEYSIZE;
}
err = ecc_make_key_ex(prng, wprng, key, &ltc_ecc_sets[x]);
key->idx = x;
return err;
}
int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_set_type *dp)
{
int err;
ecc_point *base;
void *prime, *order;
unsigned char *buf;
int keysize;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(ltc_mp.name != NULL);
LTC_ARGCHK(dp != NULL);
/* good prng? */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
key->idx = -1;
key->dp = dp;
keysize = dp->size;
/* allocate ram */
base = NULL;
buf = XMALLOC(ECC_MAXSIZE);
if (buf == NULL) {
return CRYPT_MEM;
}
/* make up random string */
if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) {
err = CRYPT_ERROR_READPRNG;
goto ERR_BUF;
}
/* setup the key variables */
if ((err = mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, &order, NULL)) != CRYPT_OK) {
goto ERR_BUF;
}
base = ltc_ecc_new_point();
if (base == NULL) {
err = CRYPT_MEM;
goto errkey;
}
/* read in the specs for this key */
if ((err = mp_read_radix(prime, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto errkey; }
if ((err = mp_read_radix(order, (char *)key->dp->order, 16)) != CRYPT_OK) { goto errkey; }
if ((err = mp_read_radix(base->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto errkey; }
if ((err = mp_read_radix(base->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto errkey; }
if ((err = mp_set(base->z, 1)) != CRYPT_OK) { goto errkey; }
if ((err = mp_read_unsigned_bin(key->k, (unsigned char *)buf, keysize)) != CRYPT_OK) { goto errkey; }
/* the key should be smaller than the order of base point */
if (mp_cmp(key->k, order) != LTC_MP_LT) {
if((err = mp_mod(key->k, order, key->k)) != CRYPT_OK) { goto errkey; }
}
/* make the public key */
if ((err = ltc_mp.ecc_ptmul(key->k, base, &key->pubkey, prime, 1)) != CRYPT_OK) { goto errkey; }
key->type = PK_PRIVATE;
/* free up ram */
err = CRYPT_OK;
goto cleanup;
errkey:
mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL);
cleanup:
ltc_ecc_del_point(base);
mp_clear_multi(prime, order, NULL);
ERR_BUF:
#ifdef LTC_CLEAN_STACK
zeromem(buf, ECC_MAXSIZE);
#endif
XFREE(buf);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,93 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_shared_secret.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Create an ECC shared secret between two keys
@param private_key The private ECC key
@param public_key The public key
@param out [out] Destination of the shared secret (Conforms to EC-DH from ANSI X9.63)
@param outlen [in/out] The max size and resulting size of the shared secret
@return CRYPT_OK if successful
*/
int ecc_shared_secret(ecc_key *private_key, ecc_key *public_key,
unsigned char *out, unsigned long *outlen)
{
unsigned long x;
ecc_point *result;
void *prime;
int err;
LTC_ARGCHK(private_key != NULL);
LTC_ARGCHK(public_key != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* type valid? */
if (private_key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
if (ltc_ecc_is_valid_idx(private_key->idx) == 0 || ltc_ecc_is_valid_idx(public_key->idx) == 0) {
return CRYPT_INVALID_ARG;
}
if (XSTRCMP(private_key->dp->name, public_key->dp->name) != 0) {
return CRYPT_PK_TYPE_MISMATCH;
}
/* make new point */
result = ltc_ecc_new_point();
if (result == NULL) {
return CRYPT_MEM;
}
if ((err = mp_init(&prime)) != CRYPT_OK) {
ltc_ecc_del_point(result);
return err;
}
if ((err = mp_read_radix(prime, (char *)private_key->dp->prime, 16)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptmul(private_key->k, &public_key->pubkey, result, prime, 1)) != CRYPT_OK) { goto done; }
x = (unsigned long)mp_unsigned_bin_size(prime);
if (*outlen < x) {
*outlen = x;
err = CRYPT_BUFFER_OVERFLOW;
goto done;
}
zeromem(out, x);
if ((err = mp_to_unsigned_bin(result->x, out + (x - mp_unsigned_bin_size(result->x)))) != CRYPT_OK) { goto done; }
err = CRYPT_OK;
*outlen = x;
done:
mp_clear(prime);
ltc_ecc_del_point(result);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,171 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#include "tomcrypt.h"
#ifdef LTC_MECC
/**
@file ecc_sign_hash.c
ECC Crypto, Tom St Denis
*/
static int _ecc_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key, int sigformat)
{
ecc_key pubkey;
void *r, *s, *e, *p, *b;
int err, max_iterations = LTC_PK_MAX_RETRIES;
unsigned long pbits, pbytes, i, shift_right;
unsigned char ch, buf[MAXBLOCKSIZE];
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* is this a private key? */
if (key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
/* is the IDX valid ? */
if (ltc_ecc_is_valid_idx(key->idx) != 1) {
return CRYPT_PK_INVALID_TYPE;
}
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* init the bignums */
if ((err = mp_init_multi(&r, &s, &p, &e, &b, NULL)) != CRYPT_OK) {
return err;
}
if ((err = mp_read_radix(p, (char *)key->dp->order, 16)) != CRYPT_OK) { goto errnokey; }
/* get the hash and load it as a bignum into 'e' */
pbits = mp_count_bits(p);
pbytes = (pbits+7) >> 3;
if (pbits > inlen*8) {
if ((err = mp_read_unsigned_bin(e, (unsigned char *)in, inlen)) != CRYPT_OK) { goto errnokey; }
}
else if (pbits % 8 == 0) {
if ((err = mp_read_unsigned_bin(e, (unsigned char *)in, pbytes)) != CRYPT_OK) { goto errnokey; }
}
else {
shift_right = 8 - pbits % 8;
for (i=0, ch=0; i<pbytes; i++) {
buf[i] = ch;
ch = (in[i] << (8-shift_right));
buf[i] = buf[i] ^ (in[i] >> shift_right);
}
if ((err = mp_read_unsigned_bin(e, (unsigned char *)buf, pbytes)) != CRYPT_OK) { goto errnokey; }
}
/* make up a key and export the public copy */
do {
if ((err = ecc_make_key_ex(prng, wprng, &pubkey, key->dp)) != CRYPT_OK) {
goto errnokey;
}
/* find r = x1 mod n */
if ((err = mp_mod(pubkey.pubkey.x, p, r)) != CRYPT_OK) { goto error; }
if (mp_iszero(r) == LTC_MP_YES) {
ecc_free(&pubkey);
} else {
if ((err = rand_bn_upto(b, p, prng, wprng)) != CRYPT_OK) { goto error; } /* b = blinding value */
/* find s = (e + xr)/k */
if ((err = mp_mulmod(pubkey.k, b, p, pubkey.k)) != CRYPT_OK) { goto error; } /* k = kb */
if ((err = mp_invmod(pubkey.k, p, pubkey.k)) != CRYPT_OK) { goto error; } /* k = 1/kb */
if ((err = mp_mulmod(key->k, r, p, s)) != CRYPT_OK) { goto error; } /* s = xr */
if ((err = mp_mulmod(pubkey.k, s, p, s)) != CRYPT_OK) { goto error; } /* s = xr/kb */
if ((err = mp_mulmod(pubkey.k, e, p, e)) != CRYPT_OK) { goto error; } /* e = e/kb */
if ((err = mp_add(e, s, s)) != CRYPT_OK) { goto error; } /* s = e/kb + xr/kb */
if ((err = mp_mulmod(s, b, p, s)) != CRYPT_OK) { goto error; } /* s = b(e/kb + xr/kb) = (e + xr)/k */
ecc_free(&pubkey);
if (mp_iszero(s) == LTC_MP_NO) {
break;
}
}
} while (--max_iterations > 0);
if (max_iterations == 0) {
goto errnokey;
}
if (sigformat == 1) {
/* RFC7518 format */
if (*outlen < 2*pbytes) { err = CRYPT_MEM; goto errnokey; }
zeromem(out, 2*pbytes);
i = mp_unsigned_bin_size(r);
if ((err = mp_to_unsigned_bin(r, out + (pbytes - i))) != CRYPT_OK) { goto errnokey; }
i = mp_unsigned_bin_size(s);
if ((err = mp_to_unsigned_bin(s, out + (2*pbytes - i))) != CRYPT_OK) { goto errnokey; }
*outlen = 2*pbytes;
err = CRYPT_OK;
}
else {
/* store as ASN.1 SEQUENCE { r, s -- integer } */
err = der_encode_sequence_multi(out, outlen,
LTC_ASN1_INTEGER, 1UL, r,
LTC_ASN1_INTEGER, 1UL, s,
LTC_ASN1_EOL, 0UL, NULL);
}
goto errnokey;
error:
ecc_free(&pubkey);
errnokey:
mp_clear_multi(r, s, p, e, b, NULL);
return err;
}
/**
Sign a message digest
@param in The message digest to sign
@param inlen The length of the digest
@param out [out] The destination for the signature
@param outlen [in/out] The max size and resulting size of the signature
@param prng An active PRNG state
@param wprng The index of the PRNG you wish to use
@param key A private ECC key
@return CRYPT_OK if successful
*/
int ecc_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key)
{
return _ecc_sign_hash(in, inlen, out, outlen, prng, wprng, key, 0);
}
/**
Sign a message digest in RFC7518 format
@param in The message digest to sign
@param inlen The length of the digest
@param out [out] The destination for the signature
@param outlen [in/out] The max size and resulting size of the signature
@param prng An active PRNG state
@param wprng The index of the PRNG you wish to use
@param key A private ECC key
@return CRYPT_OK if successful
*/
int ecc_sign_hash_rfc7518(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key)
{
return _ecc_sign_hash(in, inlen, out, outlen, prng, wprng, key, 1);
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,46 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_sizes.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
void ecc_sizes(int *low, int *high)
{
int i;
LTC_ARGCHKVD(low != NULL);
LTC_ARGCHKVD(high != NULL);
*low = INT_MAX;
*high = 0;
for (i = 0; ltc_ecc_sets[i].size != 0; i++) {
if (ltc_ecc_sets[i].size < *low) {
*low = ltc_ecc_sets[i].size;
}
if (ltc_ecc_sets[i].size > *high) {
*high = ltc_ecc_sets[i].size;
}
}
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,93 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_test.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Perform on the ECC system
@return CRYPT_OK if successful
*/
int ecc_test(void)
{
void *modulus, *order;
ecc_point *G, *GG;
int i, err, primality;
if ((err = mp_init_multi(&modulus, &order, NULL)) != CRYPT_OK) {
return err;
}
G = ltc_ecc_new_point();
GG = ltc_ecc_new_point();
if (G == NULL || GG == NULL) {
mp_clear_multi(modulus, order, NULL);
ltc_ecc_del_point(G);
ltc_ecc_del_point(GG);
return CRYPT_MEM;
}
for (i = 0; ltc_ecc_sets[i].size; i++) {
#if 0
printf("Testing %d\n", ltc_ecc_sets[i].size);
#endif
if ((err = mp_read_radix(modulus, (char *)ltc_ecc_sets[i].prime, 16)) != CRYPT_OK) { goto done; }
if ((err = mp_read_radix(order, (char *)ltc_ecc_sets[i].order, 16)) != CRYPT_OK) { goto done; }
/* is prime actually prime? */
if ((err = mp_prime_is_prime(modulus, 8, &primality)) != CRYPT_OK) { goto done; }
if (primality == 0) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
/* is order prime ? */
if ((err = mp_prime_is_prime(order, 8, &primality)) != CRYPT_OK) { goto done; }
if (primality == 0) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
if ((err = mp_read_radix(G->x, (char *)ltc_ecc_sets[i].Gx, 16)) != CRYPT_OK) { goto done; }
if ((err = mp_read_radix(G->y, (char *)ltc_ecc_sets[i].Gy, 16)) != CRYPT_OK) { goto done; }
mp_set(G->z, 1);
/* then we should have G == (order + 1)G */
if ((err = mp_add_d(order, 1, order)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptmul(order, G, GG, modulus, 1)) != CRYPT_OK) { goto done; }
if (mp_cmp(G->x, GG->x) != LTC_MP_EQ || mp_cmp(G->y, GG->y) != LTC_MP_EQ) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
}
err = CRYPT_OK;
done:
ltc_ecc_del_point(GG);
ltc_ecc_del_point(G);
mp_clear_multi(order, modulus, NULL);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,200 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#include "tomcrypt.h"
#ifdef LTC_MECC
/**
@file ecc_verify_hash.c
ECC Crypto, Tom St Denis
*/
static int _ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, ecc_key *key, int sigformat)
{
ecc_point *mG, *mQ;
void *r, *s, *v, *w, *u1, *u2, *e, *p, *m;
void *mp;
int err;
unsigned long pbits, pbytes, i, shift_right;
unsigned char ch, buf[MAXBLOCKSIZE];
LTC_ARGCHK(sig != NULL);
LTC_ARGCHK(hash != NULL);
LTC_ARGCHK(stat != NULL);
LTC_ARGCHK(key != NULL);
/* default to invalid signature */
*stat = 0;
mp = NULL;
/* is the IDX valid ? */
if (ltc_ecc_is_valid_idx(key->idx) != 1) {
return CRYPT_PK_INVALID_TYPE;
}
/* allocate ints */
if ((err = mp_init_multi(&r, &s, &v, &w, &u1, &u2, &p, &e, &m, NULL)) != CRYPT_OK) {
return CRYPT_MEM;
}
/* allocate points */
mG = ltc_ecc_new_point();
mQ = ltc_ecc_new_point();
if (mQ == NULL || mG == NULL) {
err = CRYPT_MEM;
goto error;
}
if (sigformat == 1) {
/* RFC7518 format */
if ((siglen % 2) == 1) {
err = CRYPT_INVALID_PACKET;
goto error;
}
i = siglen / 2;
if ((err = mp_read_unsigned_bin(r, (unsigned char *)sig, i)) != CRYPT_OK) { goto error; }
if ((err = mp_read_unsigned_bin(s, (unsigned char *)sig+i, i)) != CRYPT_OK) { goto error; }
}
else {
/* ASN.1 format */
if ((err = der_decode_sequence_multi(sig, siglen,
LTC_ASN1_INTEGER, 1UL, r,
LTC_ASN1_INTEGER, 1UL, s,
LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto error; }
}
/* get the order */
if ((err = mp_read_radix(p, (char *)key->dp->order, 16)) != CRYPT_OK) { goto error; }
/* get the modulus */
if ((err = mp_read_radix(m, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto error; }
/* check for zero */
if (mp_iszero(r) || mp_iszero(s) || mp_cmp(r, p) != LTC_MP_LT || mp_cmp(s, p) != LTC_MP_LT) {
err = CRYPT_INVALID_PACKET;
goto error;
}
/* read hash - truncate if needed */
pbits = mp_count_bits(p);
pbytes = (pbits+7) >> 3;
if (pbits > hashlen*8) {
if ((err = mp_read_unsigned_bin(e, (unsigned char *)hash, hashlen)) != CRYPT_OK) { goto error; }
}
else if (pbits % 8 == 0) {
if ((err = mp_read_unsigned_bin(e, (unsigned char *)hash, pbytes)) != CRYPT_OK) { goto error; }
}
else {
shift_right = 8 - pbits % 8;
for (i=0, ch=0; i<pbytes; i++) {
buf[i] = ch;
ch = (hash[i] << (8-shift_right));
buf[i] = buf[i] ^ (hash[i] >> shift_right);
}
if ((err = mp_read_unsigned_bin(e, (unsigned char *)buf, pbytes)) != CRYPT_OK) { goto error; }
}
/* w = s^-1 mod n */
if ((err = mp_invmod(s, p, w)) != CRYPT_OK) { goto error; }
/* u1 = ew */
if ((err = mp_mulmod(e, w, p, u1)) != CRYPT_OK) { goto error; }
/* u2 = rw */
if ((err = mp_mulmod(r, w, p, u2)) != CRYPT_OK) { goto error; }
/* find mG and mQ */
if ((err = mp_read_radix(mG->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto error; }
if ((err = mp_read_radix(mG->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto error; }
if ((err = mp_set(mG->z, 1)) != CRYPT_OK) { goto error; }
if ((err = mp_copy(key->pubkey.x, mQ->x)) != CRYPT_OK) { goto error; }
if ((err = mp_copy(key->pubkey.y, mQ->y)) != CRYPT_OK) { goto error; }
if ((err = mp_copy(key->pubkey.z, mQ->z)) != CRYPT_OK) { goto error; }
/* compute u1*mG + u2*mQ = mG */
if (ltc_mp.ecc_mul2add == NULL) {
if ((err = ltc_mp.ecc_ptmul(u1, mG, mG, m, 0)) != CRYPT_OK) { goto error; }
if ((err = ltc_mp.ecc_ptmul(u2, mQ, mQ, m, 0)) != CRYPT_OK) { goto error; }
/* find the montgomery mp */
if ((err = mp_montgomery_setup(m, &mp)) != CRYPT_OK) { goto error; }
/* add them */
if ((err = ltc_mp.ecc_ptadd(mQ, mG, mG, m, mp)) != CRYPT_OK) { goto error; }
/* reduce */
if ((err = ltc_mp.ecc_map(mG, m, mp)) != CRYPT_OK) { goto error; }
} else {
/* use Shamir's trick to compute u1*mG + u2*mQ using half of the doubles */
if ((err = ltc_mp.ecc_mul2add(mG, u1, mQ, u2, mG, m)) != CRYPT_OK) { goto error; }
}
/* v = X_x1 mod n */
if ((err = mp_mod(mG->x, p, v)) != CRYPT_OK) { goto error; }
/* does v == r */
if (mp_cmp(v, r) == LTC_MP_EQ) {
*stat = 1;
}
/* clear up and return */
err = CRYPT_OK;
error:
ltc_ecc_del_point(mG);
ltc_ecc_del_point(mQ);
mp_clear_multi(r, s, v, w, u1, u2, p, e, m, NULL);
if (mp != NULL) {
mp_montgomery_free(mp);
}
return err;
}
/**
Verify an ECC signature
@param sig The signature to verify
@param siglen The length of the signature (octets)
@param hash The hash (message digest) that was signed
@param hashlen The length of the hash (octets)
@param stat Result of signature, 1==valid, 0==invalid
@param key The corresponding public ECC key
@return CRYPT_OK if successful (even if the signature is not valid)
*/
int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, ecc_key *key)
{
return _ecc_verify_hash(sig, siglen, hash, hashlen, stat, key, 0);
}
/**
Verify an ECC signature in RFC7518 format
@param sig The signature to verify
@param siglen The length of the signature (octets)
@param hash The hash (message digest) that was signed
@param hashlen The length of the hash (octets)
@param stat Result of signature, 1==valid, 0==invalid
@param key The corresponding public ECC key
@return CRYPT_OK if successful (even if the signature is not valid)
*/
int ecc_verify_hash_rfc7518(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, ecc_key *key)
{
return _ecc_verify_hash(sig, siglen, hash, hashlen, stat, key, 1);
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,44 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_is_valid_idx.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/** Returns whether an ECC idx is valid or not
@param n The idx number to check
@return 1 if valid, 0 if not
*/
int ltc_ecc_is_valid_idx(int n)
{
int x;
for (x = 0; ltc_ecc_sets[x].size != 0; x++);
/* -1 is a valid index --- indicating that the domain params were supplied by the user */
if ((n >= -1) && (n < x)) {
return 1;
}
return 0;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,74 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_map.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Map a projective jacbobian point back to affine space
@param P [in/out] The point to map
@param modulus The modulus of the field the ECC curve is in
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int ltc_ecc_map(ecc_point *P, void *modulus, void *mp)
{
void *t1, *t2;
int err;
LTC_ARGCHK(P != NULL);
LTC_ARGCHK(modulus != NULL);
LTC_ARGCHK(mp != NULL);
if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
return err;
}
/* first map z back to normal */
if ((err = mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK) { goto done; }
/* get 1/z */
if ((err = mp_invmod(P->z, modulus, t1)) != CRYPT_OK) { goto done; }
/* get 1/z^2 and 1/z^3 */
if ((err = mp_sqr(t1, t2)) != CRYPT_OK) { goto done; }
if ((err = mp_mod(t2, modulus, t2)) != CRYPT_OK) { goto done; }
if ((err = mp_mul(t1, t2, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_mod(t1, modulus, t1)) != CRYPT_OK) { goto done; }
/* multiply against x/y */
if ((err = mp_mul(P->x, t2, P->x)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = mp_mul(P->y, t1, P->y)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = mp_set(P->z, 1)) != CRYPT_OK) { goto done; }
err = CRYPT_OK;
done:
mp_clear_multi(t1, t2, NULL);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,206 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_mul2add.c
ECC Crypto, Shamir's Trick, Tom St Denis
*/
#ifdef LTC_MECC
#ifdef LTC_ECC_SHAMIR
/** Computes kA*A + kB*B = C using Shamir's Trick
@param A First point to multiply
@param kA What to multiple A by
@param B Second point to multiply
@param kB What to multiple B by
@param C [out] Destination point (can overlap with A or B
@param modulus Modulus for curve
@return CRYPT_OK on success
*/
int ltc_ecc_mul2add(ecc_point *A, void *kA,
ecc_point *B, void *kB,
ecc_point *C,
void *modulus)
{
ecc_point *precomp[16];
unsigned bitbufA, bitbufB, lenA, lenB, len, x, y, nA, nB, nibble;
unsigned char *tA, *tB;
int err, first;
void *mp, *mu;
/* argchks */
LTC_ARGCHK(A != NULL);
LTC_ARGCHK(B != NULL);
LTC_ARGCHK(C != NULL);
LTC_ARGCHK(kA != NULL);
LTC_ARGCHK(kB != NULL);
LTC_ARGCHK(modulus != NULL);
/* allocate memory */
tA = XCALLOC(1, ECC_BUF_SIZE);
if (tA == NULL) {
return CRYPT_MEM;
}
tB = XCALLOC(1, ECC_BUF_SIZE);
if (tB == NULL) {
XFREE(tA);
return CRYPT_MEM;
}
/* get sizes */
lenA = mp_unsigned_bin_size(kA);
lenB = mp_unsigned_bin_size(kB);
len = MAX(lenA, lenB);
/* sanity check */
if ((lenA > ECC_BUF_SIZE) || (lenB > ECC_BUF_SIZE)) {
err = CRYPT_INVALID_ARG;
goto ERR_T;
}
/* extract and justify kA */
mp_to_unsigned_bin(kA, (len - lenA) + tA);
/* extract and justify kB */
mp_to_unsigned_bin(kB, (len - lenB) + tB);
/* allocate the table */
for (x = 0; x < 16; x++) {
precomp[x] = ltc_ecc_new_point();
if (precomp[x] == NULL) {
for (y = 0; y < x; ++y) {
ltc_ecc_del_point(precomp[y]);
}
err = CRYPT_MEM;
goto ERR_T;
}
}
/* init montgomery reduction */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {
goto ERR_P;
}
if ((err = mp_init(&mu)) != CRYPT_OK) {
goto ERR_MP;
}
if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {
goto ERR_MU;
}
/* copy ones ... */
if ((err = mp_mulmod(A->x, mu, modulus, precomp[1]->x)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(A->y, mu, modulus, precomp[1]->y)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(A->z, mu, modulus, precomp[1]->z)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(B->x, mu, modulus, precomp[1<<2]->x)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(B->y, mu, modulus, precomp[1<<2]->y)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(B->z, mu, modulus, precomp[1<<2]->z)) != CRYPT_OK) { goto ERR_MU; }
/* precomp [i,0](A + B) table */
if ((err = ltc_mp.ecc_ptdbl(precomp[1], precomp[2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
if ((err = ltc_mp.ecc_ptadd(precomp[1], precomp[2], precomp[3], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
/* precomp [0,i](A + B) table */
if ((err = ltc_mp.ecc_ptdbl(precomp[1<<2], precomp[2<<2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
if ((err = ltc_mp.ecc_ptadd(precomp[1<<2], precomp[2<<2], precomp[3<<2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
/* precomp [i,j](A + B) table (i != 0, j != 0) */
for (x = 1; x < 4; x++) {
for (y = 1; y < 4; y++) {
if ((err = ltc_mp.ecc_ptadd(precomp[x], precomp[(y<<2)], precomp[x+(y<<2)], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
}
}
nibble = 3;
first = 1;
bitbufA = tA[0];
bitbufB = tB[0];
/* for every byte of the multiplicands */
for (x = 0;; ) {
/* grab a nibble */
if (++nibble == 4) {
if (x == len) break;
bitbufA = tA[x];
bitbufB = tB[x];
nibble = 0;
++x;
}
/* extract two bits from both, shift/update */
nA = (bitbufA >> 6) & 0x03;
nB = (bitbufB >> 6) & 0x03;
bitbufA = (bitbufA << 2) & 0xFF;
bitbufB = (bitbufB << 2) & 0xFF;
/* if both zero, if first, continue */
if ((nA == 0) && (nB == 0) && (first == 1)) {
continue;
}
/* double twice, only if this isn't the first */
if (first == 0) {
/* double twice */
if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
}
/* if not both zero */
if ((nA != 0) || (nB != 0)) {
if (first == 1) {
/* if first, copy from table */
first = 0;
if ((err = mp_copy(precomp[nA + (nB<<2)]->x, C->x)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_copy(precomp[nA + (nB<<2)]->y, C->y)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_copy(precomp[nA + (nB<<2)]->z, C->z)) != CRYPT_OK) { goto ERR_MU; }
} else {
/* if not first, add from table */
if ((err = ltc_mp.ecc_ptadd(C, precomp[nA + (nB<<2)], C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
}
}
}
/* reduce to affine */
err = ltc_ecc_map(C, modulus, mp);
/* clean up */
ERR_MU:
mp_clear(mu);
ERR_MP:
mp_montgomery_free(mp);
ERR_P:
for (x = 0; x < 16; x++) {
ltc_ecc_del_point(precomp[x]);
}
ERR_T:
#ifdef LTC_CLEAN_STACK
zeromem(tA, ECC_BUF_SIZE);
zeromem(tB, ECC_BUF_SIZE);
#endif
XFREE(tA);
XFREE(tB);
return err;
}
#endif
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,220 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_mulmod.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
#ifndef LTC_ECC_TIMING_RESISTANT
/* size of sliding window, don't change this! */
#define WINSIZE 4
/**
Perform a point multiplication
@param k The scalar to multiply by
@param G The base point
@param R [out] Destination for kG
@param modulus The modulus of the field the ECC curve is in
@param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective)
@return CRYPT_OK on success
*/
int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map)
{
ecc_point *tG, *M[8];
int i, j, err;
void *mu, *mp;
ltc_mp_digit buf;
int first, bitbuf, bitcpy, bitcnt, mode, digidx;
LTC_ARGCHK(k != NULL);
LTC_ARGCHK(G != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
/* init montgomery reduction */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {
return err;
}
if ((err = mp_init(&mu)) != CRYPT_OK) {
mp_montgomery_free(mp);
return err;
}
if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {
mp_montgomery_free(mp);
mp_clear(mu);
return err;
}
/* alloc ram for window temps */
for (i = 0; i < 8; i++) {
M[i] = ltc_ecc_new_point();
if (M[i] == NULL) {
for (j = 0; j < i; j++) {
ltc_ecc_del_point(M[j]);
}
mp_montgomery_free(mp);
mp_clear(mu);
return CRYPT_MEM;
}
}
/* make a copy of G incase R==G */
tG = ltc_ecc_new_point();
if (tG == NULL) { err = CRYPT_MEM; goto done; }
/* tG = G and convert to montgomery */
if (mp_cmp_d(mu, 1) == LTC_MP_EQ) {
if ((err = mp_copy(G->x, tG->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(G->y, tG->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(G->z, tG->z)) != CRYPT_OK) { goto done; }
} else {
if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; }
}
mp_clear(mu);
mu = NULL;
/* calc the M tab, which holds kG for k==8..15 */
/* M[0] == 8G */
if ((err = ltc_mp.ecc_ptdbl(tG, M[0], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; }
/* now find (8+k)G for k=1..7 */
for (j = 9; j < 16; j++) {
if ((err = ltc_mp.ecc_ptadd(M[j-9], tG, M[j-8], modulus, mp)) != CRYPT_OK) { goto done; }
}
/* setup sliding window */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = mp_get_digit_count(k) - 1;
bitcpy = bitbuf = 0;
first = 1;
/* perform ops */
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
if (digidx == -1) {
break;
}
buf = mp_get_digit(k, digidx);
bitcnt = (int) ltc_mp.bits_per_digit;
--digidx;
}
/* grab the next msb from the ltiplicand */
i = (buf >> (ltc_mp.bits_per_digit - 1)) & 1;
buf <<= 1;
/* skip leading zero bits */
if (mode == 0 && i == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we double */
if (mode == 1 && i == 0) {
if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
continue;
}
/* else we add it to the window */
bitbuf |= (i << (WINSIZE - ++bitcpy));
mode = 2;
if (bitcpy == WINSIZE) {
/* if this is the first window we do a simple copy */
if (first == 1) {
/* R = kG [k = first window] */
if ((err = mp_copy(M[bitbuf-8]->x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[bitbuf-8]->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[bitbuf-8]->z, R->z)) != CRYPT_OK) { goto done; }
first = 0;
} else {
/* normal window */
/* ok window is filled so double as required and add */
/* double first */
for (j = 0; j < WINSIZE; j++) {
if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */
if ((err = ltc_mp.ecc_ptadd(R, M[bitbuf-8], R, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* empty window and reset */
bitcpy = bitbuf = 0;
mode = 1;
}
}
/* if bits remain then double/add */
if (mode == 2 && bitcpy > 0) {
/* double then add */
for (j = 0; j < bitcpy; j++) {
/* only double if we have had at least one add first */
if (first == 0) {
if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
bitbuf <<= 1;
if ((bitbuf & (1 << WINSIZE)) != 0) {
if (first == 1){
/* first add, so copy */
if ((err = mp_copy(tG->x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->z, R->z)) != CRYPT_OK) { goto done; }
first = 0;
} else {
/* then add */
if ((err = ltc_mp.ecc_ptadd(R, tG, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
}
}
}
/* map R back from projective space */
if (map) {
err = ltc_ecc_map(R, modulus, mp);
} else {
err = CRYPT_OK;
}
done:
if (mu != NULL) {
mp_clear(mu);
}
mp_montgomery_free(mp);
ltc_ecc_del_point(tG);
for (i = 0; i < 8; i++) {
ltc_ecc_del_point(M[i]);
}
return err;
}
#endif
#undef WINSIZE
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,163 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_mulmod_timing.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
#ifdef LTC_ECC_TIMING_RESISTANT
/**
Perform a point multiplication (timing resistant)
@param k The scalar to multiply by
@param G The base point
@param R [out] Destination for kG
@param modulus The modulus of the field the ECC curve is in
@param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective)
@return CRYPT_OK on success
*/
int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map)
{
ecc_point *tG, *M[3];
int i, j, err;
void *mu, *mp;
ltc_mp_digit buf;
int bitcnt, mode, digidx;
LTC_ARGCHK(k != NULL);
LTC_ARGCHK(G != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
/* init montgomery reduction */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {
return err;
}
if ((err = mp_init(&mu)) != CRYPT_OK) {
mp_montgomery_free(mp);
return err;
}
if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {
mp_clear(mu);
mp_montgomery_free(mp);
return err;
}
/* alloc ram for window temps */
for (i = 0; i < 3; i++) {
M[i] = ltc_ecc_new_point();
if (M[i] == NULL) {
for (j = 0; j < i; j++) {
ltc_ecc_del_point(M[j]);
}
mp_clear(mu);
mp_montgomery_free(mp);
return CRYPT_MEM;
}
}
/* make a copy of G incase R==G */
tG = ltc_ecc_new_point();
if (tG == NULL) { err = CRYPT_MEM; goto done; }
/* tG = G and convert to montgomery */
if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; }
mp_clear(mu);
mu = NULL;
/* calc the M tab */
/* M[0] == G */
if ((err = mp_copy(tG->x, M[0]->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->y, M[0]->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->z, M[0]->z)) != CRYPT_OK) { goto done; }
/* M[1] == 2G */
if ((err = ltc_mp.ecc_ptdbl(tG, M[1], modulus, mp)) != CRYPT_OK) { goto done; }
/* setup sliding window */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = mp_get_digit_count(k) - 1;
/* perform ops */
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
if (digidx == -1) {
break;
}
buf = mp_get_digit(k, digidx);
bitcnt = (int) MP_DIGIT_BIT;
--digidx;
}
/* grab the next msb from the ltiplicand */
i = (buf >> (MP_DIGIT_BIT - 1)) & 1;
buf <<= 1;
if (mode == 0 && i == 0) {
/* dummy operations */
if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
continue;
}
if (mode == 0 && i == 1) {
mode = 1;
/* dummy operations */
if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
continue;
}
if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[i^1], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[i], M[i], modulus, mp)) != CRYPT_OK) { goto done; }
}
/* copy result out */
if ((err = mp_copy(M[0]->x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[0]->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[0]->z, R->z)) != CRYPT_OK) { goto done; }
/* map R back from projective space */
if (map) {
err = ltc_ecc_map(R, modulus, mp);
} else {
err = CRYPT_OK;
}
done:
if (mu != NULL) {
mp_clear(mu);
}
mp_montgomery_free(mp);
ltc_ecc_del_point(tG);
for (i = 0; i < 3; i++) {
ltc_ecc_del_point(M[i]);
}
return err;
}
#endif
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,58 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_points.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
/**
Allocate a new ECC point
@return A newly allocated point or NULL on error
*/
ecc_point *ltc_ecc_new_point(void)
{
ecc_point *p;
p = XCALLOC(1, sizeof(*p));
if (p == NULL) {
return NULL;
}
if (mp_init_multi(&p->x, &p->y, &p->z, NULL) != CRYPT_OK) {
XFREE(p);
return NULL;
}
return p;
}
/** Free an ECC point from memory
@param p The point to free
*/
void ltc_ecc_del_point(ecc_point *p)
{
/* prevents free'ing null arguments */
if (p != NULL) {
mp_clear_multi(p->x, p->y, p->z, NULL); /* note: p->z may be NULL but that's ok with this function anyways */
XFREE(p);
}
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,194 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_projective_add_point.c
ECC Crypto, Tom St Denis
*/
#if defined(LTC_MECC) && (!defined(LTC_MECC_ACCEL) || defined(LTM_DESC))
/**
Add two ECC points
@param P The point to add
@param Q The point to add
@param R [out] The destination of the double
@param modulus The modulus of the field the ECC curve is in
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp)
{
void *t1, *t2, *x, *y, *z;
int err;
LTC_ARGCHK(P != NULL);
LTC_ARGCHK(Q != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
LTC_ARGCHK(mp != NULL);
if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != CRYPT_OK) {
return err;
}
/* should we dbl instead? */
if ((err = mp_sub(modulus, Q->y, t1)) != CRYPT_OK) { goto done; }
if ( (mp_cmp(P->x, Q->x) == LTC_MP_EQ) &&
(Q->z != NULL && mp_cmp(P->z, Q->z) == LTC_MP_EQ) &&
(mp_cmp(P->y, Q->y) == LTC_MP_EQ || mp_cmp(P->y, t1) == LTC_MP_EQ)) {
mp_clear_multi(t1, t2, x, y, z, NULL);
return ltc_ecc_projective_dbl_point(P, R, modulus, mp);
}
if ((err = mp_copy(P->x, x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(P->y, y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(P->z, z)) != CRYPT_OK) { goto done; }
/* if Z is one then these are no-operations */
if (Q->z != NULL) {
/* T1 = Z' * Z' */
if ((err = mp_sqr(Q->z, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* X = X * T1 */
if ((err = mp_mul(t1, x, x)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; }
/* T1 = Z' * T1 */
if ((err = mp_mul(Q->z, t1, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* Y = Y * T1 */
if ((err = mp_mul(t1, y, y)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(y, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* T1 = Z*Z */
if ((err = mp_sqr(z, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* T2 = X' * T1 */
if ((err = mp_mul(Q->x, t1, t2)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; }
/* T1 = Z * T1 */
if ((err = mp_mul(z, t1, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* T1 = Y' * T1 */
if ((err = mp_mul(Q->y, t1, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* Y = Y - T1 */
if ((err = mp_sub(y, t1, y)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(y, 0) == LTC_MP_LT) {
if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; }
}
/* T1 = 2T1 */
if ((err = mp_add(t1, t1, t1)) != CRYPT_OK) { goto done; }
if (mp_cmp(t1, modulus) != LTC_MP_LT) {
if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; }
}
/* T1 = Y + T1 */
if ((err = mp_add(t1, y, t1)) != CRYPT_OK) { goto done; }
if (mp_cmp(t1, modulus) != LTC_MP_LT) {
if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; }
}
/* X = X - T2 */
if ((err = mp_sub(x, t2, x)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(x, 0) == LTC_MP_LT) {
if ((err = mp_add(x, modulus, x)) != CRYPT_OK) { goto done; }
}
/* T2 = 2T2 */
if ((err = mp_add(t2, t2, t2)) != CRYPT_OK) { goto done; }
if (mp_cmp(t2, modulus) != LTC_MP_LT) {
if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK) { goto done; }
}
/* T2 = X + T2 */
if ((err = mp_add(t2, x, t2)) != CRYPT_OK) { goto done; }
if (mp_cmp(t2, modulus) != LTC_MP_LT) {
if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK) { goto done; }
}
/* if Z' != 1 */
if (Q->z != NULL) {
/* Z = Z * Z' */
if ((err = mp_mul(z, Q->z, z)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* Z = Z * X */
if ((err = mp_mul(z, x, z)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK) { goto done; }
/* T1 = T1 * X */
if ((err = mp_mul(t1, x, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* X = X * X */
if ((err = mp_sqr(x, x)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; }
/* T2 = T2 * x */
if ((err = mp_mul(t2, x, t2)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; }
/* T1 = T1 * X */
if ((err = mp_mul(t1, x, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* X = Y*Y */
if ((err = mp_sqr(y, x)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; }
/* X = X - T2 */
if ((err = mp_sub(x, t2, x)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(x, 0) == LTC_MP_LT) {
if ((err = mp_add(x, modulus, x)) != CRYPT_OK) { goto done; }
}
/* T2 = T2 - X */
if ((err = mp_sub(t2, x, t2)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; }
}
/* T2 = T2 - X */
if ((err = mp_sub(t2, x, t2)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; }
}
/* T2 = T2 * Y */
if ((err = mp_mul(t2, y, t2)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; }
/* Y = T2 - T1 */
if ((err = mp_sub(t2, t1, y)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(y, 0) == LTC_MP_LT) {
if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; }
}
/* Y = Y/2 */
if (mp_isodd(y)) {
if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; }
}
if ((err = mp_div_2(y, y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(z, R->z)) != CRYPT_OK) { goto done; }
err = CRYPT_OK;
done:
mp_clear_multi(t1, t2, x, y, z, NULL);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */

View File

@ -0,0 +1,145 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_projective_dbl_point.c
ECC Crypto, Tom St Denis
*/
#if defined(LTC_MECC) && (!defined(LTC_MECC_ACCEL) || defined(LTM_DESC))
/**
Double an ECC point
@param P The point to double
@param R [out] The destination of the double
@param modulus The modulus of the field the ECC curve is in
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp)
{
void *t1, *t2;
int err;
LTC_ARGCHK(P != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
LTC_ARGCHK(mp != NULL);
if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
return err;
}
if (P != R) {
if ((err = mp_copy(P->x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(P->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(P->z, R->z)) != CRYPT_OK) { goto done; }
}
/* t1 = Z * Z */
if ((err = mp_sqr(R->z, t1)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; }
/* Z = Y * Z */
if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK) { goto done; }
/* Z = 2Z */
if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK) { goto done; }
if (mp_cmp(R->z, modulus) != LTC_MP_LT) {
if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK) { goto done; }
}
/* T2 = X - T1 */
if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; }
}
/* T1 = X + T1 */
if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK) { goto done; }
if (mp_cmp(t1, modulus) != LTC_MP_LT) {
if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; }
}
/* T2 = T1 * T2 */
if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; }
/* T1 = 2T2 */
if ((err = mp_add(t2, t2, t1)) != CRYPT_OK) { goto done; }
if (mp_cmp(t1, modulus) != LTC_MP_LT) {
if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; }
}
/* T1 = T1 + T2 */
if ((err = mp_add(t1, t2, t1)) != CRYPT_OK) { goto done; }
if (mp_cmp(t1, modulus) != LTC_MP_LT) {
if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; }
}
/* Y = 2Y */
if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK) { goto done; }
if (mp_cmp(R->y, modulus) != LTC_MP_LT) {
if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK) { goto done; }
}
/* Y = Y * Y */
if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; }
/* T2 = Y * Y */
if ((err = mp_sqr(R->y, t2)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; }
/* T2 = T2/2 */
if (mp_isodd(t2)) {
if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; }
}
if ((err = mp_div_2(t2, t2)) != CRYPT_OK) { goto done; }
/* Y = Y * X */
if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; }
/* X = T1 * T1 */
if ((err = mp_sqr(t1, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK) { goto done; }
/* X = X - Y */
if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; }
}
/* X = X - Y */
if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; }
}
/* Y = Y - X */
if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; }
}
/* Y = Y * T1 */
if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; }
/* Y = Y - T2 */
if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK) { goto done; }
if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; }
}
err = CRYPT_OK;
done:
mp_clear_multi(t1, t2, NULL);
return err;
}
#endif
/* ref: HEAD -> master, tag: v1.18.2 */
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
/* commit time: 2018-07-01 22:49:01 +0200 */