hle: nvdrv: Rewrite of GPU memory management.

This commit is contained in:
bunnei
2020-07-26 00:16:21 -04:00
parent b69f902b18
commit 05def61398
6 changed files with 451 additions and 613 deletions

View File

@ -6,9 +6,9 @@
#include <map>
#include <optional>
#include <vector>
#include "common/common_types.h"
#include "common/page_table.h"
namespace VideoCore {
class RasterizerInterface;
@ -20,45 +20,57 @@ class System;
namespace Tegra {
/**
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
* with homogeneous attributes across its extents. In this particular implementation each VMA is
* also backed by a single host memory allocation.
*/
struct VirtualMemoryArea {
enum class Type : u8 {
Unmapped,
Allocated,
Mapped,
class PageEntry final {
public:
enum class State : u32 {
Unmapped = static_cast<u32>(-1),
Allocated = static_cast<u32>(-2),
};
/// Virtual base address of the region.
GPUVAddr base{};
/// Size of the region.
u64 size{};
/// Memory area mapping type.
Type type{Type::Unmapped};
/// CPU memory mapped address corresponding to this memory area.
VAddr backing_addr{};
/// Offset into the backing_memory the mapping starts from.
std::size_t offset{};
/// Pointer backing this VMA.
u8* backing_memory{};
constexpr PageEntry() = default;
constexpr PageEntry(State state) : state{state} {}
constexpr PageEntry(VAddr addr) : state{static_cast<State>(addr >> ShiftBits)} {}
/// Tests if this area can be merged to the right with `next`.
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
constexpr bool IsUnmapped() const {
return state == State::Unmapped;
}
constexpr bool IsAllocated() const {
return state == State::Allocated;
}
constexpr bool IsValid() const {
return !IsUnmapped() && !IsAllocated();
}
constexpr VAddr ToAddress() const {
if (!IsValid()) {
return {};
}
return static_cast<VAddr>(state) << ShiftBits;
}
constexpr PageEntry operator+(u64 offset) {
// If this is a reserved value, offsets do not apply
if (!IsValid()) {
return *this;
}
return PageEntry{(static_cast<VAddr>(state) << ShiftBits) + offset};
}
private:
static constexpr std::size_t ShiftBits{12};
State state{State::Unmapped};
};
static_assert(sizeof(PageEntry) == 4, "PageEntry is too large");
class MemoryManager final {
public:
explicit MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer);
~MemoryManager();
GPUVAddr AllocateSpace(u64 size, u64 align);
GPUVAddr AllocateSpace(GPUVAddr addr, u64 size, u64 align);
GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size);
GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr addr, u64 size);
GPUVAddr UnmapBuffer(GPUVAddr addr, u64 size);
std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
template <typename T>
@ -70,9 +82,6 @@ public:
u8* GetPointer(GPUVAddr addr);
const u8* GetPointer(GPUVAddr addr) const;
/// Returns true if the block is continuous in host memory, false otherwise
bool IsBlockContinuous(GPUVAddr start, std::size_t size) const;
/**
* ReadBlock and WriteBlock are full read and write operations over virtual
* GPU Memory. It's important to use these when GPU memory may not be continuous
@ -98,92 +107,43 @@ public:
void CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size);
/**
* IsGranularRange checks if a gpu region can be simply read with a pointer
* IsGranularRange checks if a gpu region can be simply read with a pointer.
*/
bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size);
private:
using VMAMap = std::map<GPUVAddr, VirtualMemoryArea>;
using VMAHandle = VMAMap::const_iterator;
using VMAIter = VMAMap::iterator;
bool IsAddressValid(GPUVAddr addr) const;
void MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
VAddr backing_addr = 0);
void MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr);
void UnmapRegion(GPUVAddr base, u64 size);
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
VMAHandle FindVMA(GPUVAddr target) const;
VMAHandle AllocateMemory(GPUVAddr target, std::size_t offset, u64 size);
/**
* Maps an unmanaged host memory pointer at a given address.
*
* @param target The guest address to start the mapping at.
* @param memory The memory to be mapped.
* @param size Size of the mapping in bytes.
* @param backing_addr The base address of the range to back this mapping.
*/
VMAHandle MapBackingMemory(GPUVAddr target, u8* memory, u64 size, VAddr backing_addr);
/// Unmaps a range of addresses, splitting VMAs as necessary.
void UnmapRange(GPUVAddr target, u64 size);
/// Converts a VMAHandle to a mutable VMAIter.
VMAIter StripIterConstness(const VMAHandle& iter);
/// Marks as the specified VMA as allocated.
VMAIter Allocate(VMAIter vma);
/**
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
* the appropriate error checking.
*/
VMAIter CarveVMA(GPUVAddr base, u64 size);
/**
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
* end of the range.
*/
VMAIter CarveVMARange(GPUVAddr base, u64 size);
/**
* Splits a VMA in two, at the specified offset.
* @returns the right side of the split, with the original iterator becoming the left side.
*/
VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
/**
* Checks for and merges the specified VMA with adjacent ones if possible.
* @returns the merged VMA or the original if no merging was possible.
*/
VMAIter MergeAdjacent(VMAIter vma);
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
/// Finds a free (unmapped region) of the specified size starting at the specified address.
GPUVAddr FindFreeRegion(GPUVAddr region_start, u64 size) const;
GPUVAddr Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size);
GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align);
std::optional<GPUVAddr> AllocateFixed(GPUVAddr gpu_addr, std::size_t size);
GPUVAddr Allocate(std::size_t size, std::size_t align);
void Unmap(GPUVAddr gpu_addr, std::size_t size);
private:
PageEntry GetPageEntry(GPUVAddr gpu_addr) const;
void SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size = page_size);
GPUVAddr UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size);
std::optional<GPUVAddr> FindFreeRange(std::size_t size, std::size_t align) const;
void TryLockPage(PageEntry page_entry, std::size_t size);
void TryUnlockPage(PageEntry page_entry, std::size_t size);
static constexpr std::size_t PageEntryIndex(GPUVAddr gpu_addr) {
return (gpu_addr >> page_bits) & page_table_mask;
}
static constexpr u64 address_space_size = 1ULL << 40;
static constexpr u64 address_space_start = 1ULL << 32;
static constexpr u64 page_bits{16};
static constexpr u64 page_size{1 << page_bits};
static constexpr u64 page_mask{page_size - 1};
/// Address space in bits, according to Tegra X1 TRM
static constexpr u32 address_space_width{40};
/// Start address for mapping, this is fairly arbitrary but must be non-zero.
static constexpr GPUVAddr address_space_base{0x100000};
/// End of address space, based on address space in bits.
static constexpr GPUVAddr address_space_end{1ULL << address_space_width};
Common::PageTable page_table;
VMAMap vma_map;
VideoCore::RasterizerInterface& rasterizer;
static constexpr u64 page_table_bits{24};
static constexpr u64 page_table_size{1 << page_table_bits};
static constexpr u64 page_table_mask{page_table_size - 1};
Core::System& system;
VideoCore::RasterizerInterface& rasterizer;
std::vector<PageEntry> page_table;
};
} // namespace Tegra