Implement MapPhysicalMemory/UnmapPhysicalMemory

This implements svcMapPhysicalMemory/svcUnmapPhysicalMemory for Yuzu,
which can be used to map memory at a desired address by games since
3.0.0.

It also properly parses SystemResourceSize from NPDM, and makes
information available via svcGetInfo.

This is needed for games like Super Smash Bros. and Diablo 3 -- this
PR's implementation does not run into the "ASCII reads" issue mentioned
in the comments of #2626, which was caused by the following bugs in
Yuzu's memory management that this PR also addresses:
* Yuzu's memory coalescing does not properly merge blocks. This results
  in a polluted address space/svcQueryMemory results that would be
  impossible to replicate on hardware, which can lead to game code making
  the wrong assumptions about memory layout.
  * This implements better merging for AllocatedMemoryBlocks.
* Yuzu's implementation of svcMirrorMemory unprotected the entire
  virtual memory range containing the range being mirrored. This could
  lead to games attempting to map data at that unprotected
  range/attempting to access that range after yuzu improperly unmapped
  it.
  * This PR fixes it by simply calling ReprotectRange instead of
    Reprotect.
This commit is contained in:
Michael Scire
2019-07-07 09:42:54 -07:00
parent 9e689a81f8
commit 13a8fde3ad
8 changed files with 475 additions and 21 deletions

View File

@ -12,6 +12,8 @@
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/memory_setup.h"
@ -49,9 +51,8 @@ bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
type != next.type) {
return false;
}
if (type == VMAType::AllocatedMemoryBlock &&
(backing_block != next.backing_block || offset + size != next.offset)) {
return false;
if (type == VMAType::AllocatedMemoryBlock) {
return true;
}
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
return false;
@ -100,7 +101,7 @@ bool VMManager::IsValidHandle(VMAHandle handle) const {
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block,
std::size_t offset, u64 size,
MemoryState state) {
MemoryState state, VMAPermission perm) {
ASSERT(block != nullptr);
ASSERT(offset + size <= block->size());
@ -119,7 +120,7 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::AllocatedMemoryBlock;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.permissions = perm;
final_vma.state = state;
final_vma.backing_block = std::move(block);
final_vma.offset = offset;
@ -308,6 +309,258 @@ ResultVal<VAddr> VMManager::SetHeapSize(u64 size) {
return MakeResult<VAddr>(heap_region_base);
}
ResultCode VMManager::MapPhysicalMemory(VAddr target, u64 size) {
const auto last_addr = target + size - 1;
VAddr cur_addr = target;
std::size_t mapped_size = 0;
ResultCode result = RESULT_SUCCESS;
// Check whether we've already mapped the desired memory.
{
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state != MemoryState::Unmapped) {
mapped_size += last_addr - cur_addr + 1;
}
break;
}
if (state != MemoryState::Unmapped) {
mapped_size += vma_start + vma_size - cur_addr;
}
cur_addr = vma_start + vma_size;
vma++;
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
}
// If we already have the desired amount mapped, we're done.
if (mapped_size == size) {
return RESULT_SUCCESS;
}
}
// Check that we can map the memory we want.
const auto res_limit = Core::CurrentProcess()->GetResourceLimit();
const u64 physmem_remaining = res_limit->GetMaxResourceValue(ResourceType::PhysicalMemory) -
res_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory);
if (physmem_remaining < (size - mapped_size)) {
return ERR_RESOURCE_LIMIT_EXCEEDED;
}
// Keep track of the memory regions we unmap.
std::vector<std::pair<u64, u64>> mapped_regions;
// Iterate, trying to map memory.
// Map initially with VMAPermission::None.
{
cur_addr = target;
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Unmapped) {
const auto map_res = MapMemoryBlock(
cur_addr, std::make_shared<std::vector<u8>>(last_addr - cur_addr + 1, 0), 0,
last_addr - cur_addr + 1, MemoryState::Heap, VMAPermission::None);
result = map_res.Code();
if (result.IsSuccess()) {
mapped_regions.push_back(
std::make_pair(cur_addr, last_addr - cur_addr + 1));
}
}
break;
}
if (state == MemoryState::Unmapped) {
const auto map_res = MapMemoryBlock(
cur_addr, std::make_shared<std::vector<u8>>(vma_start + vma_size - cur_addr, 0),
0, vma_start + vma_size - cur_addr, MemoryState::Heap, VMAPermission::None);
result = map_res.Code();
if (result.IsSuccess()) {
mapped_regions.push_back(
std::make_pair(cur_addr, vma_start + vma_size - cur_addr));
} else {
break;
}
}
cur_addr = vma_start + vma_size;
vma = FindVMA(cur_addr);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
}
}
// If we failed, unmap memory.
if (result.IsError()) {
for (const auto& it : mapped_regions) {
const auto unmap_res = UnmapRange(it.first, it.second);
ASSERT_MSG(unmap_res.IsSuccess(), "MapPhysicalMemory un-map on error");
}
return result;
}
// We didn't fail, so reprotect all the memory to ReadWrite.
{
cur_addr = target;
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
const auto perm = vma->second.permissions;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Heap && perm == VMAPermission::None) {
ASSERT_MSG(
ReprotectRange(cur_addr, last_addr - cur_addr + 1, VMAPermission::ReadWrite)
.IsSuccess(),
"MapPhysicalMemory reprotect");
}
break;
}
if (state == MemoryState::Heap && perm == VMAPermission::None) {
ASSERT_MSG(ReprotectRange(cur_addr, vma_start + vma_size - cur_addr,
VMAPermission::ReadWrite)
.IsSuccess(),
"MapPhysicalMemory reprotect");
}
cur_addr = vma_start + vma_size;
vma = FindVMA(cur_addr);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
}
}
// Update amount of mapped physical memory.
physical_memory_mapped += size - mapped_size;
return RESULT_SUCCESS;
}
ResultCode VMManager::UnmapPhysicalMemory(VAddr target, u64 size) {
auto last_addr = target + size - 1;
VAddr cur_addr = target;
std::size_t mapped_size = 0;
ResultCode result = RESULT_SUCCESS;
// Check how much of the memory is currently mapped.
{
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
const auto attr = vma->second.attribute;
// Memory within region must be free or mapped heap.
if (!((state == MemoryState::Heap && attr == MemoryAttribute::None) ||
(state == MemoryState::Unmapped))) {
return ERR_INVALID_ADDRESS_STATE;
}
// If this is the last block and it's mapped, update mapped size.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Heap) {
mapped_size += last_addr - cur_addr + 1;
}
break;
}
if (state == MemoryState::Heap) {
mapped_size += vma_start + vma_size - cur_addr;
}
cur_addr = vma_start + vma_size;
vma++;
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
}
// If memory is already unmapped, we're done.
if (mapped_size == 0) {
return RESULT_SUCCESS;
}
}
// Keep track of the memory regions we unmap.
std::vector<std::pair<u64, u64>> unmapped_regions;
// Try to unmap regions.
{
cur_addr = target;
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
const auto perm = vma->second.permissions;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Heap) {
result = UnmapRange(cur_addr, last_addr - cur_addr + 1);
if (result.IsSuccess()) {
unmapped_regions.push_back(
std::make_pair(cur_addr, last_addr - cur_addr + 1));
}
}
break;
}
if (state == MemoryState::Heap) {
result = UnmapRange(cur_addr, vma_start + vma_size - cur_addr);
if (result.IsSuccess()) {
unmapped_regions.push_back(
std::make_pair(cur_addr, vma_start + vma_size - cur_addr));
} else {
break;
}
}
cur_addr = vma_start + vma_size;
vma = FindVMA(cur_addr);
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
}
}
// If we failed, re-map regions.
// TODO: Preserve memory contents?
if (result.IsError()) {
for (const auto& it : unmapped_regions) {
const auto remap_res =
MapMemoryBlock(it.first, std::make_shared<std::vector<u8>>(it.second, 0), 0,
it.second, MemoryState::Heap, VMAPermission::None);
ASSERT_MSG(remap_res.Succeeded(), "UnmapPhysicalMemory re-map on error");
}
}
return RESULT_SUCCESS;
}
ResultCode VMManager::MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) {
constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped;
const auto src_check_result = CheckRangeState(
@ -455,7 +708,7 @@ ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, Mem
// Protect mirror with permissions from old region
Reprotect(new_vma, vma->second.permissions);
// Remove permissions from old region
Reprotect(vma, VMAPermission::None);
ReprotectRange(src_addr, size, VMAPermission::None);
return RESULT_SUCCESS;
}
@ -588,14 +841,14 @@ VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma = std::next(iter);
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size;
MergeAdjacentVMA(iter->second, next_vma->second);
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter);
if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size;
MergeAdjacentVMA(prev_vma->second, iter->second);
vma_map.erase(iter);
iter = prev_vma;
}
@ -604,6 +857,57 @@ VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
return iter;
}
void VMManager::MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right) {
ASSERT(left.CanBeMergedWith(right));
// Always merge allocated memory blocks, even when they don't share the same backing block.
if (left.type == VMAType::AllocatedMemoryBlock &&
(left.backing_block != right.backing_block || left.offset + left.size != right.offset)) {
// Check if we can save work.
if (left.offset == 0 && left.size == left.backing_block->size()) {
// Fast case: left is an entire backing block.
left.backing_block->insert(left.backing_block->end(),
right.backing_block->begin() + right.offset,
right.backing_block->begin() + right.offset + right.size);
} else {
// Slow case: make a new memory block for left and right.
auto new_memory = std::make_shared<std::vector<u8>>();
new_memory->insert(new_memory->end(), left.backing_block->begin() + left.offset,
left.backing_block->begin() + left.offset + left.size);
new_memory->insert(new_memory->end(), right.backing_block->begin() + right.offset,
right.backing_block->begin() + right.offset + right.size);
left.backing_block = new_memory;
left.offset = 0;
}
// Page table update is needed, because backing memory changed.
left.size += right.size;
UpdatePageTableForVMA(left);
// Update mappings for unicorn.
system.ArmInterface(0).UnmapMemory(left.base, left.size);
system.ArmInterface(1).UnmapMemory(left.base, left.size);
system.ArmInterface(2).UnmapMemory(left.base, left.size);
system.ArmInterface(3).UnmapMemory(left.base, left.size);
system.ArmInterface(0).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(1).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(2).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(3).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
} else {
// Just update the size.
left.size += right.size;
}
}
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VMAType::Free: