maxwell_dma: Rename registers to match official docs and reorder

Rename registers in the MaxwellDMA class to match Nvidia's official
documentation. This one can be found here:

https://github.com/NVIDIA/open-gpu-doc/blob/master/classes/dma-copy/clb0b5.h

While we are at it, reorganize the code in MaxwellDMA to be separated in
different functions.
This commit is contained in:
ReinUsesLisp
2020-07-03 22:00:30 -03:00
parent 6ae0b83442
commit 2a9d17b7e7
2 changed files with 379 additions and 311 deletions

View File

@ -14,50 +14,44 @@
namespace Tegra::Engines {
using namespace Texture;
MaxwellDMA::MaxwellDMA(Core::System& system, MemoryManager& memory_manager)
: system{system}, memory_manager{memory_manager} {}
void MaxwellDMA::CallMethod(u32 method, u32 method_argument, bool is_last_call) {
ASSERT_MSG(method < Regs::NUM_REGS,
"Invalid MaxwellDMA register, increase the size of the Regs structure");
ASSERT_MSG(method < NUM_REGS, "Invalid MaxwellDMA register");
regs.reg_array[method] = method_argument;
#define MAXWELLDMA_REG_INDEX(field_name) \
(offsetof(Tegra::Engines::MaxwellDMA::Regs, field_name) / sizeof(u32))
switch (method) {
case MAXWELLDMA_REG_INDEX(exec): {
HandleCopy();
break;
if (method == offsetof(Regs, launch_dma) / sizeof(u32)) {
Launch();
}
}
#undef MAXWELLDMA_REG_INDEX
}
void MaxwellDMA::CallMultiMethod(u32 method, const u32* base_start, u32 amount,
u32 methods_pending) {
for (std::size_t i = 0; i < amount; i++) {
for (size_t i = 0; i < amount; ++i) {
CallMethod(method, base_start[i], methods_pending - static_cast<u32>(i) <= 1);
}
}
void MaxwellDMA::HandleCopy() {
void MaxwellDMA::Launch() {
LOG_TRACE(HW_GPU, "Requested a DMA copy");
const GPUVAddr source = regs.src_address.Address();
const GPUVAddr dest = regs.dst_address.Address();
// TODO(Subv): Perform more research and implement all features of this engine.
ASSERT(regs.exec.enable_swizzle == 0);
ASSERT(regs.exec.query_mode == Regs::QueryMode::None);
ASSERT(regs.exec.query_intr == Regs::QueryIntr::None);
ASSERT(regs.exec.copy_mode == Regs::CopyMode::Unk2);
ASSERT(regs.dst_params.pos_x == 0);
ASSERT(regs.dst_params.pos_y == 0);
const LaunchDMA& launch = regs.launch_dma;
ASSERT(launch.remap_enable == 0);
ASSERT(launch.semaphore_type == LaunchDMA::SemaphoreType::NONE);
ASSERT(launch.interrupt_type == LaunchDMA::InterruptType::NONE);
ASSERT(launch.data_transfer_type == LaunchDMA::DataTransferType::NON_PIPELINED);
ASSERT(regs.dst_params.origin.x == 0);
ASSERT(regs.dst_params.origin.y == 0);
if (!regs.exec.is_dst_linear && !regs.exec.is_src_linear) {
const bool is_src_pitch = launch.src_memory_layout == LaunchDMA::MemoryLayout::PITCH;
const bool is_dst_pitch = launch.dst_memory_layout == LaunchDMA::MemoryLayout::PITCH;
if (!is_src_pitch && !is_dst_pitch) {
// If both the source and the destination are in block layout, assert.
UNREACHABLE_MSG("Tiled->Tiled DMA transfers are not yet implemented");
return;
@ -66,144 +60,158 @@ void MaxwellDMA::HandleCopy() {
// All copies here update the main memory, so mark all rasterizer states as invalid.
system.GPU().Maxwell3D().OnMemoryWrite();
if (regs.exec.is_dst_linear && regs.exec.is_src_linear) {
// When the enable_2d bit is disabled, the copy is performed as if we were copying a 1D
// buffer of length `x_count`, otherwise we copy a 2D image of dimensions (x_count,
// y_count).
if (!regs.exec.enable_2d) {
memory_manager.CopyBlock(dest, source, regs.x_count);
return;
}
// If both the source and the destination are in linear layout, perform a line-by-line
// copy. We're going to take a subrect of size (x_count, y_count) from the source
// rectangle. There is no need to manually flush/invalidate the regions because
// CopyBlock does that for us.
for (u32 line = 0; line < regs.y_count; ++line) {
const GPUVAddr source_line = source + line * regs.src_pitch;
const GPUVAddr dest_line = dest + line * regs.dst_pitch;
memory_manager.CopyBlock(dest_line, source_line, regs.x_count);
}
return;
}
ASSERT(regs.exec.enable_2d == 1);
if (regs.exec.is_dst_linear && !regs.exec.is_src_linear) {
ASSERT(regs.src_params.BlockDepth() == 0);
// Optimized path for micro copies.
if (regs.dst_pitch * regs.y_count < Texture::GetGOBSize() && regs.dst_pitch <= 64) {
const u32 bytes_per_pixel = regs.dst_pitch / regs.x_count;
const std::size_t src_size = Texture::GetGOBSize();
const std::size_t dst_size = regs.dst_pitch * regs.y_count;
u32 pos_x = regs.src_params.pos_x;
u32 pos_y = regs.src_params.pos_y;
const u64 offset =
Texture::GetGOBOffset(regs.src_params.size_x, regs.src_params.size_y, pos_x, pos_y,
regs.src_params.BlockDepth(), bytes_per_pixel);
const u32 x_in_gob = 64 / bytes_per_pixel;
pos_x = pos_x % x_in_gob;
pos_y = pos_y % 8;
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(source + offset, read_buffer.data(), src_size);
memory_manager.ReadBlock(dest, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(source + offset, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(dest, write_buffer.data(), dst_size);
}
Texture::UnswizzleSubrect(regs.x_count, regs.y_count, regs.dst_pitch,
regs.src_params.size_x, bytes_per_pixel, read_buffer.data(),
write_buffer.data(), regs.src_params.BlockHeight(), pos_x,
pos_y);
memory_manager.WriteBlock(dest, write_buffer.data(), dst_size);
return;
}
// If the input is tiled and the output is linear, deswizzle the input and copy it over.
const u32 bytes_per_pixel = regs.dst_pitch / regs.x_count;
const std::size_t src_size = Texture::CalculateSize(
true, bytes_per_pixel, regs.src_params.size_x, regs.src_params.size_y,
regs.src_params.size_z, regs.src_params.BlockHeight(), regs.src_params.BlockDepth());
const std::size_t src_layer_size = Texture::CalculateSize(
true, bytes_per_pixel, regs.src_params.size_x, regs.src_params.size_y, 1,
regs.src_params.BlockHeight(), regs.src_params.BlockDepth());
const std::size_t dst_size = regs.dst_pitch * regs.y_count;
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(source, read_buffer.data(), src_size);
memory_manager.ReadBlock(dest, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(source, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(dest, write_buffer.data(), dst_size);
}
Texture::UnswizzleSubrect(
regs.x_count, regs.y_count, regs.dst_pitch, regs.src_params.size_x, bytes_per_pixel,
read_buffer.data() + src_layer_size * regs.src_params.pos_z, write_buffer.data(),
regs.src_params.BlockHeight(), regs.src_params.pos_x, regs.src_params.pos_y);
memory_manager.WriteBlock(dest, write_buffer.data(), dst_size);
if (is_src_pitch && is_dst_pitch) {
CopyPitchToPitch();
} else {
ASSERT(regs.dst_params.BlockDepth() == 0);
ASSERT(launch.multi_line_enable == 1);
const u32 bytes_per_pixel = regs.src_pitch / regs.x_count;
const std::size_t dst_size = Texture::CalculateSize(
true, bytes_per_pixel, regs.dst_params.size_x, regs.dst_params.size_y,
regs.dst_params.size_z, regs.dst_params.BlockHeight(), regs.dst_params.BlockDepth());
const std::size_t dst_layer_size = Texture::CalculateSize(
true, bytes_per_pixel, regs.dst_params.size_x, regs.dst_params.size_y, 1,
regs.dst_params.BlockHeight(), regs.dst_params.BlockDepth());
const std::size_t src_size = regs.src_pitch * regs.y_count;
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(source, read_buffer.data(), src_size);
memory_manager.ReadBlock(dest, write_buffer.data(), dst_size);
if (!is_src_pitch && is_dst_pitch) {
CopyBlockLinearToPitch();
} else {
memory_manager.ReadBlockUnsafe(source, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(dest, write_buffer.data(), dst_size);
CopyPitchToBlockLinear();
}
// If the input is linear and the output is tiled, swizzle the input and copy it over.
Texture::SwizzleSubrect(
regs.x_count, regs.y_count, regs.src_pitch, regs.dst_params.size_x, bytes_per_pixel,
write_buffer.data() + dst_layer_size * regs.dst_params.pos_z, read_buffer.data(),
regs.dst_params.BlockHeight(), regs.dst_params.pos_x, regs.dst_params.pos_y);
memory_manager.WriteBlock(dest, write_buffer.data(), dst_size);
}
}
void MaxwellDMA::CopyPitchToPitch() {
// When `multi_line_enable` bit is disabled the copy is performed as if we were copying a 1D
// buffer of length `line_length_in`.
// Otherwise we copy a 2D image of dimensions (line_length_in, line_count).
if (!regs.launch_dma.multi_line_enable) {
memory_manager.CopyBlock(regs.offset_out, regs.offset_in, regs.line_length_in);
return;
}
// Perform a line-by-line copy.
// We're going to take a subrect of size (line_length_in, line_count) from the source rectangle.
// There is no need to manually flush/invalidate the regions because CopyBlock does that for us.
for (u32 line = 0; line < regs.line_count; ++line) {
const GPUVAddr source_line = regs.offset_in + static_cast<size_t>(line) * regs.pitch_in;
const GPUVAddr dest_line = regs.offset_out + static_cast<size_t>(line) * regs.pitch_out;
memory_manager.CopyBlock(dest_line, source_line, regs.line_length_in);
}
}
void MaxwellDMA::CopyBlockLinearToPitch() {
ASSERT(regs.src_params.block_size.depth == 0);
// Optimized path for micro copies.
const size_t dst_size = static_cast<size_t>(regs.pitch_out) * regs.line_count;
if (dst_size < GetGOBSize() && regs.pitch_out <= 64) {
FastCopyBlockLinearToPitch();
return;
}
// Deswizzle the input and copy it over.
const u32 bytes_per_pixel = regs.pitch_out / regs.line_length_in;
const Parameters& src_params = regs.src_params;
const u32 width = src_params.width;
const u32 height = src_params.height;
const u32 depth = src_params.depth;
const u32 block_height = src_params.block_size.height;
const u32 block_depth = src_params.block_size.depth;
const size_t src_size =
CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth);
const size_t src_layer_size =
CalculateSize(true, bytes_per_pixel, width, height, 1, block_height, block_depth);
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size);
}
UnswizzleSubrect(regs.line_length_in, regs.line_count, regs.pitch_out, src_params.width,
bytes_per_pixel, read_buffer.data() + src_layer_size * src_params.layer,
write_buffer.data(), src_params.block_size.height, src_params.origin.x,
src_params.origin.y);
memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size);
}
void MaxwellDMA::CopyPitchToBlockLinear() {
const auto& dst_params = regs.dst_params;
ASSERT(dst_params.block_size.depth == 0);
const u32 bytes_per_pixel = regs.pitch_in / regs.line_length_in;
const u32 width = dst_params.width;
const u32 height = dst_params.height;
const u32 depth = dst_params.depth;
const u32 block_height = dst_params.block_size.height;
const u32 block_depth = dst_params.block_size.depth;
const size_t dst_size =
CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth);
const size_t dst_layer_size =
CalculateSize(true, bytes_per_pixel, width, height, 1, block_height, block_depth);
const size_t src_size = static_cast<size_t>(regs.pitch_in) * regs.line_count;
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size);
}
// If the input is linear and the output is tiled, swizzle the input and copy it over.
SwizzleSubrect(regs.line_length_in, regs.line_count, regs.pitch_in, dst_params.width,
bytes_per_pixel, write_buffer.data() + dst_layer_size * dst_params.layer,
read_buffer.data(), dst_params.block_size.height, dst_params.origin.x,
dst_params.origin.y);
memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size);
}
void MaxwellDMA::FastCopyBlockLinearToPitch() {
const u32 bytes_per_pixel = regs.pitch_out / regs.line_length_in;
const size_t src_size = GetGOBSize();
const size_t dst_size = static_cast<size_t>(regs.pitch_out) * regs.line_count;
u32 pos_x = regs.src_params.origin.x;
u32 pos_y = regs.src_params.origin.y;
const u64 offset = GetGOBOffset(regs.src_params.width, regs.src_params.height, pos_x, pos_y,
regs.src_params.block_size.height, bytes_per_pixel);
const u32 x_in_gob = 64 / bytes_per_pixel;
pos_x = pos_x % x_in_gob;
pos_y = pos_y % 8;
if (read_buffer.size() < src_size) {
read_buffer.resize(src_size);
}
if (write_buffer.size() < dst_size) {
write_buffer.resize(dst_size);
}
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(regs.offset_in + offset, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(regs.offset_in + offset, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size);
}
UnswizzleSubrect(regs.line_length_in, regs.line_count, regs.pitch_out, regs.src_params.width,
bytes_per_pixel, read_buffer.data(), write_buffer.data(),
regs.src_params.block_size.height, pos_x, pos_y);
memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size);
}
} // namespace Tegra::Engines