vfs: expand support for NCA reading

This commit is contained in:
Liam
2023-08-10 21:34:43 -04:00
parent a8c4f01f6c
commit 86f6b6b7b2
75 changed files with 8055 additions and 1043 deletions

View File

@ -0,0 +1,58 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/overflow.h"
#include "core/file_sys/errors.h"
#include "core/file_sys/vfs.h"
namespace FileSys {
class IStorage : public VfsFile {
public:
virtual std::string GetName() const override {
return {};
}
virtual VirtualDir GetContainingDirectory() const override {
return {};
}
virtual bool IsWritable() const override {
return true;
}
virtual bool IsReadable() const override {
return true;
}
virtual bool Resize(size_t size) override {
return false;
}
virtual bool Rename(std::string_view name) override {
return false;
}
static inline Result CheckAccessRange(s64 offset, s64 size, s64 total_size) {
R_UNLESS(offset >= 0, ResultInvalidOffset);
R_UNLESS(size >= 0, ResultInvalidSize);
R_UNLESS(Common::WrappingAdd(offset, size) >= offset, ResultOutOfRange);
R_UNLESS(offset + size <= total_size, ResultOutOfRange);
R_SUCCEED();
}
};
class IReadOnlyStorage : public IStorage {
public:
virtual bool IsWritable() const override {
return false;
}
virtual size_t Write(const u8* buffer, size_t size, size_t offset) override {
return 0;
}
};
} // namespace FileSys

View File

@ -0,0 +1,46 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_funcs.h"
namespace FileSys {
struct Int64 {
u32 low;
u32 high;
constexpr void Set(s64 v) {
this->low = static_cast<u32>((v & static_cast<u64>(0x00000000FFFFFFFFULL)) >> 0);
this->high = static_cast<u32>((v & static_cast<u64>(0xFFFFFFFF00000000ULL)) >> 32);
}
constexpr s64 Get() const {
return (static_cast<s64>(this->high) << 32) | (static_cast<s64>(this->low));
}
constexpr Int64& operator=(s64 v) {
this->Set(v);
return *this;
}
constexpr operator s64() const {
return this->Get();
}
};
struct HashSalt {
static constexpr size_t Size = 32;
std::array<u8, Size> value;
};
static_assert(std::is_trivial_v<HashSalt>);
static_assert(sizeof(HashSalt) == HashSalt::Size);
constexpr inline size_t IntegrityMinLayerCount = 2;
constexpr inline size_t IntegrityMaxLayerCount = 7;
constexpr inline size_t IntegrityLayerCountSave = 5;
constexpr inline size_t IntegrityLayerCountSaveDataMeta = 4;
} // namespace FileSys

View File

@ -0,0 +1,252 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/fssystem/fssystem_aes_ctr_counter_extended_storage.h"
#include "core/file_sys/fssystem/fssystem_aes_ctr_storage.h"
#include "core/file_sys/fssystem/fssystem_nca_header.h"
#include "core/file_sys/vfs_offset.h"
namespace FileSys {
namespace {
class SoftwareDecryptor final : public AesCtrCounterExtendedStorage::IDecryptor {
public:
virtual void Decrypt(
u8* buf, size_t buf_size, const std::array<u8, AesCtrCounterExtendedStorage::KeySize>& key,
const std::array<u8, AesCtrCounterExtendedStorage::IvSize>& iv) override final;
};
} // namespace
Result AesCtrCounterExtendedStorage::CreateSoftwareDecryptor(std::unique_ptr<IDecryptor>* out) {
std::unique_ptr<IDecryptor> decryptor = std::make_unique<SoftwareDecryptor>();
R_UNLESS(decryptor != nullptr, ResultAllocationMemoryFailedInAesCtrCounterExtendedStorageA);
*out = std::move(decryptor);
R_SUCCEED();
}
Result AesCtrCounterExtendedStorage::Initialize(const void* key, size_t key_size, u32 secure_value,
VirtualFile data_storage,
VirtualFile table_storage) {
// Read and verify the bucket tree header.
BucketTree::Header header;
table_storage->ReadObject(std::addressof(header), 0);
R_TRY(header.Verify());
// Determine extents.
const auto node_storage_size = QueryNodeStorageSize(header.entry_count);
const auto entry_storage_size = QueryEntryStorageSize(header.entry_count);
const auto node_storage_offset = QueryHeaderStorageSize();
const auto entry_storage_offset = node_storage_offset + node_storage_size;
// Create a software decryptor.
std::unique_ptr<IDecryptor> sw_decryptor;
R_TRY(CreateSoftwareDecryptor(std::addressof(sw_decryptor)));
// Initialize.
R_RETURN(this->Initialize(
key, key_size, secure_value, 0, data_storage,
std::make_shared<OffsetVfsFile>(table_storage, node_storage_size, node_storage_offset),
std::make_shared<OffsetVfsFile>(table_storage, entry_storage_size, entry_storage_offset),
header.entry_count, std::move(sw_decryptor)));
}
Result AesCtrCounterExtendedStorage::Initialize(const void* key, size_t key_size, u32 secure_value,
s64 counter_offset, VirtualFile data_storage,
VirtualFile node_storage, VirtualFile entry_storage,
s32 entry_count,
std::unique_ptr<IDecryptor>&& decryptor) {
// Validate preconditions.
ASSERT(key != nullptr);
ASSERT(key_size == KeySize);
ASSERT(counter_offset >= 0);
ASSERT(decryptor != nullptr);
// Initialize the bucket tree table.
if (entry_count > 0) {
R_TRY(
m_table.Initialize(node_storage, entry_storage, NodeSize, sizeof(Entry), entry_count));
} else {
m_table.Initialize(NodeSize, 0);
}
// Set members.
m_data_storage = data_storage;
std::memcpy(m_key.data(), key, key_size);
m_secure_value = secure_value;
m_counter_offset = counter_offset;
m_decryptor = std::move(decryptor);
R_SUCCEED();
}
void AesCtrCounterExtendedStorage::Finalize() {
if (this->IsInitialized()) {
m_table.Finalize();
m_data_storage = VirtualFile();
}
}
Result AesCtrCounterExtendedStorage::GetEntryList(Entry* out_entries, s32* out_entry_count,
s32 entry_count, s64 offset, s64 size) {
// Validate pre-conditions.
ASSERT(offset >= 0);
ASSERT(size >= 0);
ASSERT(this->IsInitialized());
// Clear the out count.
R_UNLESS(out_entry_count != nullptr, ResultNullptrArgument);
*out_entry_count = 0;
// Succeed if there's no range.
R_SUCCEED_IF(size == 0);
// If we have an output array, we need it to be non-null.
R_UNLESS(out_entries != nullptr || entry_count == 0, ResultNullptrArgument);
// Check that our range is valid.
BucketTree::Offsets table_offsets;
R_TRY(m_table.GetOffsets(std::addressof(table_offsets)));
R_UNLESS(table_offsets.IsInclude(offset, size), ResultOutOfRange);
// Find the offset in our tree.
BucketTree::Visitor visitor;
R_TRY(m_table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->GetOffset();
R_UNLESS(0 <= entry_offset && table_offsets.IsInclude(entry_offset),
ResultInvalidAesCtrCounterExtendedEntryOffset);
}
// Prepare to loop over entries.
const auto end_offset = offset + static_cast<s64>(size);
s32 count = 0;
auto cur_entry = *visitor.Get<Entry>();
while (cur_entry.GetOffset() < end_offset) {
// Try to write the entry to the out list
if (entry_count != 0) {
if (count >= entry_count) {
break;
}
std::memcpy(out_entries + count, std::addressof(cur_entry), sizeof(Entry));
}
count++;
// Advance.
if (visitor.CanMoveNext()) {
R_TRY(visitor.MoveNext());
cur_entry = *visitor.Get<Entry>();
} else {
break;
}
}
// Write the output count.
*out_entry_count = count;
R_SUCCEED();
}
size_t AesCtrCounterExtendedStorage::Read(u8* buffer, size_t size, size_t offset) const {
// Validate preconditions.
ASSERT(offset >= 0);
ASSERT(this->IsInitialized());
// Allow zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
ASSERT(Common::IsAligned(offset, BlockSize));
ASSERT(Common::IsAligned(size, BlockSize));
BucketTree::Offsets table_offsets;
ASSERT(R_SUCCEEDED(m_table.GetOffsets(std::addressof(table_offsets))));
ASSERT(table_offsets.IsInclude(offset, size));
// Read the data.
m_data_storage->Read(buffer, size, offset);
// Find the offset in our tree.
BucketTree::Visitor visitor;
ASSERT(R_SUCCEEDED(m_table.Find(std::addressof(visitor), offset)));
{
const auto entry_offset = visitor.Get<Entry>()->GetOffset();
ASSERT(Common::IsAligned(entry_offset, BlockSize));
ASSERT(0 <= entry_offset && table_offsets.IsInclude(entry_offset));
}
// Prepare to read in chunks.
u8* cur_data = static_cast<u8*>(buffer);
auto cur_offset = offset;
const auto end_offset = offset + static_cast<s64>(size);
while (cur_offset < end_offset) {
// Get the current entry.
const auto cur_entry = *visitor.Get<Entry>();
// Get and validate the entry's offset.
const auto cur_entry_offset = cur_entry.GetOffset();
ASSERT(static_cast<size_t>(cur_entry_offset) <= cur_offset);
// Get and validate the next entry offset.
s64 next_entry_offset;
if (visitor.CanMoveNext()) {
ASSERT(R_SUCCEEDED(visitor.MoveNext()));
next_entry_offset = visitor.Get<Entry>()->GetOffset();
ASSERT(table_offsets.IsInclude(next_entry_offset));
} else {
next_entry_offset = table_offsets.end_offset;
}
ASSERT(Common::IsAligned(next_entry_offset, BlockSize));
ASSERT(cur_offset < static_cast<size_t>(next_entry_offset));
// Get the offset of the entry in the data we read.
const auto data_offset = cur_offset - cur_entry_offset;
const auto data_size = (next_entry_offset - cur_entry_offset) - data_offset;
ASSERT(data_size > 0);
// Determine how much is left.
const auto remaining_size = end_offset - cur_offset;
const auto cur_size = static_cast<size_t>(std::min(remaining_size, data_size));
ASSERT(cur_size <= size);
// If necessary, perform decryption.
if (cur_entry.encryption_value == Entry::Encryption::Encrypted) {
// Make the CTR for the data we're decrypting.
const auto counter_offset = m_counter_offset + cur_entry_offset + data_offset;
NcaAesCtrUpperIv upper_iv = {
.part = {.generation = static_cast<u32>(cur_entry.generation),
.secure_value = m_secure_value}};
std::array<u8, IvSize> iv;
AesCtrStorage::MakeIv(iv.data(), IvSize, upper_iv.value, counter_offset);
// Decrypt.
m_decryptor->Decrypt(cur_data, cur_size, m_key, iv);
}
// Advance.
cur_data += cur_size;
cur_offset += cur_size;
}
return size;
}
void SoftwareDecryptor::Decrypt(u8* buf, size_t buf_size,
const std::array<u8, AesCtrCounterExtendedStorage::KeySize>& key,
const std::array<u8, AesCtrCounterExtendedStorage::IvSize>& iv) {
Core::Crypto::AESCipher<Core::Crypto::Key128, AesCtrCounterExtendedStorage::KeySize> cipher(
key, Core::Crypto::Mode::CTR);
cipher.SetIV(iv);
cipher.Transcode(buf, buf_size, buf, Core::Crypto::Op::Decrypt);
}
} // namespace FileSys

View File

@ -0,0 +1,114 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <optional>
#include "common/literals.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree.h"
namespace FileSys {
using namespace Common::Literals;
class AesCtrCounterExtendedStorage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(AesCtrCounterExtendedStorage);
YUZU_NON_MOVEABLE(AesCtrCounterExtendedStorage);
public:
static constexpr size_t BlockSize = 0x10;
static constexpr size_t KeySize = 0x10;
static constexpr size_t IvSize = 0x10;
static constexpr size_t NodeSize = 16_KiB;
class IDecryptor {
public:
virtual ~IDecryptor() {}
virtual void Decrypt(u8* buf, size_t buf_size, const std::array<u8, KeySize>& key,
const std::array<u8, IvSize>& iv) = 0;
};
struct Entry {
enum class Encryption : u8 {
Encrypted = 0,
NotEncrypted = 1,
};
std::array<u8, sizeof(s64)> offset;
Encryption encryption_value;
std::array<u8, 3> reserved;
s32 generation;
void SetOffset(s64 value) {
std::memcpy(this->offset.data(), std::addressof(value), sizeof(s64));
}
s64 GetOffset() const {
s64 value;
std::memcpy(std::addressof(value), this->offset.data(), sizeof(s64));
return value;
}
};
static_assert(sizeof(Entry) == 0x10);
static_assert(alignof(Entry) == 4);
static_assert(std::is_trivial_v<Entry>);
public:
static constexpr s64 QueryHeaderStorageSize() {
return BucketTree::QueryHeaderStorageSize();
}
static constexpr s64 QueryNodeStorageSize(s32 entry_count) {
return BucketTree::QueryNodeStorageSize(NodeSize, sizeof(Entry), entry_count);
}
static constexpr s64 QueryEntryStorageSize(s32 entry_count) {
return BucketTree::QueryEntryStorageSize(NodeSize, sizeof(Entry), entry_count);
}
static Result CreateSoftwareDecryptor(std::unique_ptr<IDecryptor>* out);
private:
mutable BucketTree m_table;
VirtualFile m_data_storage;
std::array<u8, KeySize> m_key;
u32 m_secure_value;
s64 m_counter_offset;
std::unique_ptr<IDecryptor> m_decryptor;
public:
AesCtrCounterExtendedStorage()
: m_table(), m_data_storage(), m_secure_value(), m_counter_offset(), m_decryptor() {}
virtual ~AesCtrCounterExtendedStorage() {
this->Finalize();
}
Result Initialize(const void* key, size_t key_size, u32 secure_value, s64 counter_offset,
VirtualFile data_storage, VirtualFile node_storage, VirtualFile entry_storage,
s32 entry_count, std::unique_ptr<IDecryptor>&& decryptor);
void Finalize();
bool IsInitialized() const {
return m_table.IsInitialized();
}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override;
virtual size_t GetSize() const override {
BucketTree::Offsets offsets;
ASSERT(R_SUCCEEDED(m_table.GetOffsets(std::addressof(offsets))));
return offsets.end_offset;
}
Result GetEntryList(Entry* out_entries, s32* out_entry_count, s32 entry_count, s64 offset,
s64 size);
private:
Result Initialize(const void* key, size_t key_size, u32 secure_value, VirtualFile data_storage,
VirtualFile table_storage);
};
} // namespace FileSys

View File

@ -0,0 +1,129 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "common/swap.h"
#include "core/file_sys/fssystem/fssystem_aes_ctr_storage.h"
#include "core/file_sys/fssystem/fssystem_pooled_buffer.h"
#include "core/file_sys/fssystem/fssystem_utility.h"
namespace FileSys {
void AesCtrStorage::MakeIv(void* dst, size_t dst_size, u64 upper, s64 offset) {
ASSERT(dst != nullptr);
ASSERT(dst_size == IvSize);
ASSERT(offset >= 0);
const uintptr_t out_addr = reinterpret_cast<uintptr_t>(dst);
*reinterpret_cast<u64_be*>(out_addr + 0) = upper;
*reinterpret_cast<s64_be*>(out_addr + sizeof(u64)) = static_cast<s64>(offset / BlockSize);
}
AesCtrStorage::AesCtrStorage(VirtualFile base, const void* key, size_t key_size, const void* iv,
size_t iv_size)
: m_base_storage(std::move(base)) {
ASSERT(m_base_storage != nullptr);
ASSERT(key != nullptr);
ASSERT(iv != nullptr);
ASSERT(key_size == KeySize);
ASSERT(iv_size == IvSize);
std::memcpy(m_key.data(), key, KeySize);
std::memcpy(m_iv.data(), iv, IvSize);
m_cipher.emplace(m_key, Core::Crypto::Mode::CTR);
}
size_t AesCtrStorage::Read(u8* buffer, size_t size, size_t offset) const {
// Allow zero-size reads.
if (size == 0) {
return size;
}
// Ensure buffer is valid.
ASSERT(buffer != nullptr);
// We can only read at block aligned offsets.
ASSERT(Common::IsAligned(offset, BlockSize));
ASSERT(Common::IsAligned(size, BlockSize));
// Read the data.
m_base_storage->Read(buffer, size, offset);
// Setup the counter.
std::array<u8, IvSize> ctr;
std::memcpy(ctr.data(), m_iv.data(), IvSize);
AddCounter(ctr.data(), IvSize, offset / BlockSize);
// Decrypt.
m_cipher->SetIV(ctr);
m_cipher->Transcode(buffer, size, buffer, Core::Crypto::Op::Decrypt);
return size;
}
size_t AesCtrStorage::Write(const u8* buffer, size_t size, size_t offset) {
// Allow zero-size writes.
if (size == 0) {
return size;
}
// Ensure buffer is valid.
ASSERT(buffer != nullptr);
// We can only write at block aligned offsets.
ASSERT(Common::IsAligned(offset, BlockSize));
ASSERT(Common::IsAligned(size, BlockSize));
// Get a pooled buffer.
PooledBuffer pooled_buffer;
const bool use_work_buffer = true;
if (use_work_buffer) {
pooled_buffer.Allocate(size, BlockSize);
}
// Setup the counter.
std::array<u8, IvSize> ctr;
std::memcpy(ctr.data(), m_iv.data(), IvSize);
AddCounter(ctr.data(), IvSize, offset / BlockSize);
// Loop until all data is written.
size_t remaining = size;
s64 cur_offset = 0;
while (remaining > 0) {
// Determine data we're writing and where.
const size_t write_size =
use_work_buffer ? std::min(pooled_buffer.GetSize(), remaining) : remaining;
void* write_buf;
if (use_work_buffer) {
write_buf = pooled_buffer.GetBuffer();
} else {
write_buf = const_cast<u8*>(buffer);
}
// Encrypt the data.
m_cipher->SetIV(ctr);
m_cipher->Transcode(buffer, write_size, reinterpret_cast<u8*>(write_buf),
Core::Crypto::Op::Encrypt);
// Write the encrypted data.
m_base_storage->Write(reinterpret_cast<u8*>(write_buf), write_size, offset + cur_offset);
// Advance.
cur_offset += write_size;
remaining -= write_size;
if (remaining > 0) {
AddCounter(ctr.data(), IvSize, write_size / BlockSize);
}
}
return size;
}
size_t AesCtrStorage::GetSize() const {
return m_base_storage->GetSize();
}
} // namespace FileSys

View File

@ -0,0 +1,43 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <optional>
#include "core/crypto/aes_util.h"
#include "core/crypto/key_manager.h"
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/vfs.h"
namespace FileSys {
class AesCtrStorage : public IStorage {
YUZU_NON_COPYABLE(AesCtrStorage);
YUZU_NON_MOVEABLE(AesCtrStorage);
public:
static constexpr size_t BlockSize = 0x10;
static constexpr size_t KeySize = 0x10;
static constexpr size_t IvSize = 0x10;
private:
VirtualFile m_base_storage;
std::array<u8, KeySize> m_key;
std::array<u8, IvSize> m_iv;
mutable std::optional<Core::Crypto::AESCipher<Core::Crypto::Key128>> m_cipher;
public:
static void MakeIv(void* dst, size_t dst_size, u64 upper, s64 offset);
public:
AesCtrStorage(VirtualFile base, const void* key, size_t key_size, const void* iv,
size_t iv_size);
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override;
virtual size_t Write(const u8* buffer, size_t size, size_t offset) override;
virtual size_t GetSize() const override;
};
} // namespace FileSys

View File

@ -0,0 +1,112 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "common/swap.h"
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fssystem_aes_xts_storage.h"
#include "core/file_sys/fssystem/fssystem_pooled_buffer.h"
#include "core/file_sys/fssystem/fssystem_utility.h"
namespace FileSys {
void AesXtsStorage::MakeAesXtsIv(void* dst, size_t dst_size, s64 offset, size_t block_size) {
ASSERT(dst != nullptr);
ASSERT(dst_size == IvSize);
ASSERT(offset >= 0);
const uintptr_t out_addr = reinterpret_cast<uintptr_t>(dst);
*reinterpret_cast<s64_be*>(out_addr + sizeof(s64)) = offset / block_size;
}
AesXtsStorage::AesXtsStorage(VirtualFile base, const void* key1, const void* key2, size_t key_size,
const void* iv, size_t iv_size, size_t block_size)
: m_base_storage(std::move(base)), m_block_size(block_size), m_mutex() {
ASSERT(m_base_storage != nullptr);
ASSERT(key1 != nullptr);
ASSERT(key2 != nullptr);
ASSERT(iv != nullptr);
ASSERT(key_size == KeySize);
ASSERT(iv_size == IvSize);
ASSERT(Common::IsAligned(m_block_size, AesBlockSize));
std::memcpy(m_key.data() + 0, key1, KeySize);
std::memcpy(m_key.data() + 0x10, key2, KeySize);
std::memcpy(m_iv.data(), iv, IvSize);
m_cipher.emplace(m_key, Core::Crypto::Mode::XTS);
}
size_t AesXtsStorage::Read(u8* buffer, size_t size, size_t offset) const {
// Allow zero-size reads.
if (size == 0) {
return size;
}
// Ensure buffer is valid.
ASSERT(buffer != nullptr);
// We can only read at block aligned offsets.
ASSERT(Common::IsAligned(offset, AesBlockSize));
ASSERT(Common::IsAligned(size, AesBlockSize));
// Read the data.
m_base_storage->Read(buffer, size, offset);
// Setup the counter.
std::array<u8, IvSize> ctr;
std::memcpy(ctr.data(), m_iv.data(), IvSize);
AddCounter(ctr.data(), IvSize, offset / m_block_size);
// Handle any unaligned data before the start.
size_t processed_size = 0;
if ((offset % m_block_size) != 0) {
// Determine the size of the pre-data read.
const size_t skip_size =
static_cast<size_t>(offset - Common::AlignDown(offset, m_block_size));
const size_t data_size = std::min(size, m_block_size - skip_size);
// Decrypt into a pooled buffer.
{
PooledBuffer tmp_buf(m_block_size, m_block_size);
ASSERT(tmp_buf.GetSize() >= m_block_size);
std::memset(tmp_buf.GetBuffer(), 0, skip_size);
std::memcpy(tmp_buf.GetBuffer() + skip_size, buffer, data_size);
m_cipher->SetIV(ctr);
m_cipher->Transcode(tmp_buf.GetBuffer(), m_block_size, tmp_buf.GetBuffer(),
Core::Crypto::Op::Decrypt);
std::memcpy(buffer, tmp_buf.GetBuffer() + skip_size, data_size);
}
AddCounter(ctr.data(), IvSize, 1);
processed_size += data_size;
ASSERT(processed_size == std::min(size, m_block_size - skip_size));
}
// Decrypt aligned chunks.
char* cur = reinterpret_cast<char*>(buffer) + processed_size;
size_t remaining = size - processed_size;
while (remaining > 0) {
const size_t cur_size = std::min(m_block_size, remaining);
m_cipher->SetIV(ctr);
m_cipher->Transcode(cur, cur_size, cur, Core::Crypto::Op::Decrypt);
remaining -= cur_size;
cur += cur_size;
AddCounter(ctr.data(), IvSize, 1);
}
return size;
}
size_t AesXtsStorage::GetSize() const {
return m_base_storage->GetSize();
}
} // namespace FileSys

View File

@ -0,0 +1,42 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <optional>
#include "core/crypto/aes_util.h"
#include "core/crypto/key_manager.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
namespace FileSys {
class AesXtsStorage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(AesXtsStorage);
YUZU_NON_MOVEABLE(AesXtsStorage);
public:
static constexpr size_t AesBlockSize = 0x10;
static constexpr size_t KeySize = 0x20;
static constexpr size_t IvSize = 0x10;
private:
VirtualFile m_base_storage;
std::array<u8, KeySize> m_key;
std::array<u8, IvSize> m_iv;
const size_t m_block_size;
std::mutex m_mutex;
mutable std::optional<Core::Crypto::AESCipher<Core::Crypto::Key256>> m_cipher;
public:
static void MakeAesXtsIv(void* dst, size_t dst_size, s64 offset, size_t block_size);
public:
AesXtsStorage(VirtualFile base, const void* key1, const void* key2, size_t key_size,
const void* iv, size_t iv_size, size_t block_size);
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override;
virtual size_t GetSize() const override;
};
} // namespace FileSys

View File

@ -0,0 +1,146 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/alignment.h"
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/fssystem/fssystem_alignment_matching_storage_impl.h"
#include "core/file_sys/fssystem/fssystem_pooled_buffer.h"
namespace FileSys {
template <size_t DataAlign_, size_t BufferAlign_>
class AlignmentMatchingStorage : public IStorage {
YUZU_NON_COPYABLE(AlignmentMatchingStorage);
YUZU_NON_MOVEABLE(AlignmentMatchingStorage);
public:
static constexpr size_t DataAlign = DataAlign_;
static constexpr size_t BufferAlign = BufferAlign_;
static constexpr size_t DataAlignMax = 0x200;
static_assert(DataAlign <= DataAlignMax);
static_assert(Common::IsPowerOfTwo(DataAlign));
static_assert(Common::IsPowerOfTwo(BufferAlign));
private:
VirtualFile m_base_storage;
s64 m_base_storage_size;
public:
explicit AlignmentMatchingStorage(VirtualFile bs) : m_base_storage(std::move(bs)) {}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override {
// Allocate a work buffer on stack.
alignas(DataAlignMax) char work_buf[DataAlign];
// Succeed if zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
s64 bs_size = this->GetSize();
ASSERT(R_SUCCEEDED(IStorage::CheckAccessRange(offset, size, bs_size)));
return AlignmentMatchingStorageImpl::Read(m_base_storage, work_buf, sizeof(work_buf),
DataAlign, BufferAlign, offset, buffer, size);
}
virtual size_t Write(const u8* buffer, size_t size, size_t offset) override {
// Allocate a work buffer on stack.
alignas(DataAlignMax) char work_buf[DataAlign];
// Succeed if zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
s64 bs_size = this->GetSize();
ASSERT(R_SUCCEEDED(IStorage::CheckAccessRange(offset, size, bs_size)));
return AlignmentMatchingStorageImpl::Write(m_base_storage, work_buf, sizeof(work_buf),
DataAlign, BufferAlign, offset, buffer, size);
}
virtual size_t GetSize() const override {
return m_base_storage->GetSize();
}
};
template <size_t BufferAlign_>
class AlignmentMatchingStoragePooledBuffer : public IStorage {
YUZU_NON_COPYABLE(AlignmentMatchingStoragePooledBuffer);
YUZU_NON_MOVEABLE(AlignmentMatchingStoragePooledBuffer);
public:
static constexpr size_t BufferAlign = BufferAlign_;
static_assert(Common::IsPowerOfTwo(BufferAlign));
private:
VirtualFile m_base_storage;
s64 m_base_storage_size;
size_t m_data_align;
public:
explicit AlignmentMatchingStoragePooledBuffer(VirtualFile bs, size_t da)
: m_base_storage(std::move(bs)), m_data_align(da) {
ASSERT(Common::IsPowerOfTwo(da));
}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override {
// Succeed if zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
s64 bs_size = this->GetSize();
ASSERT(R_SUCCEEDED(IStorage::CheckAccessRange(offset, size, bs_size)));
// Allocate a pooled buffer.
PooledBuffer pooled_buffer;
pooled_buffer.AllocateParticularlyLarge(m_data_align, m_data_align);
return AlignmentMatchingStorageImpl::Read(m_base_storage, pooled_buffer.GetBuffer(),
pooled_buffer.GetSize(), m_data_align,
BufferAlign, offset, buffer, size);
}
virtual size_t Write(const u8* buffer, size_t size, size_t offset) override {
// Succeed if zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
s64 bs_size = this->GetSize();
ASSERT(R_SUCCEEDED(IStorage::CheckAccessRange(offset, size, bs_size)));
// Allocate a pooled buffer.
PooledBuffer pooled_buffer;
pooled_buffer.AllocateParticularlyLarge(m_data_align, m_data_align);
return AlignmentMatchingStorageImpl::Write(m_base_storage, pooled_buffer.GetBuffer(),
pooled_buffer.GetSize(), m_data_align,
BufferAlign, offset, buffer, size);
}
virtual size_t GetSize() const override {
return m_base_storage->GetSize();
}
};
} // namespace FileSys

View File

@ -0,0 +1,204 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "core/file_sys/fssystem/fssystem_alignment_matching_storage_impl.h"
namespace FileSys {
namespace {
template <typename T>
constexpr size_t GetRoundDownDifference(T x, size_t align) {
return static_cast<size_t>(x - Common::AlignDown(x, align));
}
template <typename T>
constexpr size_t GetRoundUpDifference(T x, size_t align) {
return static_cast<size_t>(Common::AlignUp(x, align) - x);
}
template <typename T>
size_t GetRoundUpDifference(T* x, size_t align) {
return GetRoundUpDifference(reinterpret_cast<uintptr_t>(x), align);
}
} // namespace
size_t AlignmentMatchingStorageImpl::Read(VirtualFile base_storage, char* work_buf,
size_t work_buf_size, size_t data_alignment,
size_t buffer_alignment, s64 offset, u8* buffer,
size_t size) {
// Check preconditions.
ASSERT(work_buf_size >= data_alignment);
// Succeed if zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
// Determine extents.
u8* aligned_core_buffer;
s64 core_offset;
size_t core_size;
size_t buffer_gap;
size_t offset_gap;
s64 covered_offset;
const size_t offset_round_up_difference = GetRoundUpDifference(offset, data_alignment);
if (Common::IsAligned(reinterpret_cast<uintptr_t>(buffer) + offset_round_up_difference,
buffer_alignment)) {
aligned_core_buffer = buffer + offset_round_up_difference;
core_offset = Common::AlignUp(offset, data_alignment);
core_size = (size < offset_round_up_difference)
? 0
: Common::AlignDown(size - offset_round_up_difference, data_alignment);
buffer_gap = 0;
offset_gap = 0;
covered_offset = core_size > 0 ? core_offset : offset;
} else {
const size_t buffer_round_up_difference = GetRoundUpDifference(buffer, buffer_alignment);
aligned_core_buffer = buffer + buffer_round_up_difference;
core_offset = Common::AlignDown(offset, data_alignment);
core_size = (size < buffer_round_up_difference)
? 0
: Common::AlignDown(size - buffer_round_up_difference, data_alignment);
buffer_gap = buffer_round_up_difference;
offset_gap = GetRoundDownDifference(offset, data_alignment);
covered_offset = offset;
}
// Read the core portion.
if (core_size > 0) {
base_storage->Read(aligned_core_buffer, core_size, core_offset);
if (offset_gap != 0 || buffer_gap != 0) {
std::memmove(aligned_core_buffer - buffer_gap, aligned_core_buffer + offset_gap,
core_size - offset_gap);
core_size -= offset_gap;
}
}
// Handle the head portion.
if (offset < covered_offset) {
const s64 head_offset = Common::AlignDown(offset, data_alignment);
const size_t head_size = static_cast<size_t>(covered_offset - offset);
ASSERT(GetRoundDownDifference(offset, data_alignment) + head_size <= work_buf_size);
base_storage->Read(reinterpret_cast<u8*>(work_buf), data_alignment, head_offset);
std::memcpy(buffer, work_buf + GetRoundDownDifference(offset, data_alignment), head_size);
}
// Handle the tail portion.
s64 tail_offset = covered_offset + core_size;
size_t remaining_tail_size = static_cast<size_t>((offset + size) - tail_offset);
while (remaining_tail_size > 0) {
const auto aligned_tail_offset = Common::AlignDown(tail_offset, data_alignment);
const auto cur_size =
std::min(static_cast<size_t>(aligned_tail_offset + data_alignment - tail_offset),
remaining_tail_size);
base_storage->Read(reinterpret_cast<u8*>(work_buf), data_alignment, aligned_tail_offset);
ASSERT((tail_offset - offset) + cur_size <= size);
ASSERT((tail_offset - aligned_tail_offset) + cur_size <= data_alignment);
std::memcpy(reinterpret_cast<char*>(buffer) + (tail_offset - offset),
work_buf + (tail_offset - aligned_tail_offset), cur_size);
remaining_tail_size -= cur_size;
tail_offset += cur_size;
}
return size;
}
size_t AlignmentMatchingStorageImpl::Write(VirtualFile base_storage, char* work_buf,
size_t work_buf_size, size_t data_alignment,
size_t buffer_alignment, s64 offset, const u8* buffer,
size_t size) {
// Check preconditions.
ASSERT(work_buf_size >= data_alignment);
// Succeed if zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
// Determine extents.
const u8* aligned_core_buffer;
s64 core_offset;
size_t core_size;
s64 covered_offset;
const size_t offset_round_up_difference = GetRoundUpDifference(offset, data_alignment);
if (Common::IsAligned(reinterpret_cast<uintptr_t>(buffer) + offset_round_up_difference,
buffer_alignment)) {
aligned_core_buffer = buffer + offset_round_up_difference;
core_offset = Common::AlignUp(offset, data_alignment);
core_size = (size < offset_round_up_difference)
? 0
: Common::AlignDown(size - offset_round_up_difference, data_alignment);
covered_offset = core_size > 0 ? core_offset : offset;
} else {
aligned_core_buffer = nullptr;
core_offset = Common::AlignDown(offset, data_alignment);
core_size = 0;
covered_offset = offset;
}
// Write the core portion.
if (core_size > 0) {
base_storage->Write(aligned_core_buffer, core_size, core_offset);
}
// Handle the head portion.
if (offset < covered_offset) {
const s64 head_offset = Common::AlignDown(offset, data_alignment);
const size_t head_size = static_cast<size_t>(covered_offset - offset);
ASSERT((offset - head_offset) + head_size <= data_alignment);
base_storage->Read(reinterpret_cast<u8*>(work_buf), data_alignment, head_offset);
std::memcpy(work_buf + (offset - head_offset), buffer, head_size);
base_storage->Write(reinterpret_cast<u8*>(work_buf), data_alignment, head_offset);
}
// Handle the tail portion.
s64 tail_offset = covered_offset + core_size;
size_t remaining_tail_size = static_cast<size_t>((offset + size) - tail_offset);
while (remaining_tail_size > 0) {
ASSERT(static_cast<size_t>(tail_offset - offset) < size);
const auto aligned_tail_offset = Common::AlignDown(tail_offset, data_alignment);
const auto cur_size =
std::min(static_cast<size_t>(aligned_tail_offset + data_alignment - tail_offset),
remaining_tail_size);
base_storage->Read(reinterpret_cast<u8*>(work_buf), data_alignment, aligned_tail_offset);
std::memcpy(work_buf + GetRoundDownDifference(tail_offset, data_alignment),
buffer + (tail_offset - offset), cur_size);
base_storage->Write(reinterpret_cast<u8*>(work_buf), data_alignment, aligned_tail_offset);
remaining_tail_size -= cur_size;
tail_offset += cur_size;
}
return size;
}
} // namespace FileSys

View File

@ -0,0 +1,21 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
namespace FileSys {
class AlignmentMatchingStorageImpl {
public:
static size_t Read(VirtualFile base_storage, char* work_buf, size_t work_buf_size,
size_t data_alignment, size_t buffer_alignment, s64 offset, u8* buffer,
size_t size);
static size_t Write(VirtualFile base_storage, char* work_buf, size_t work_buf_size,
size_t data_alignment, size_t buffer_alignment, s64 offset,
const u8* buffer, size_t size);
};
} // namespace FileSys

View File

@ -0,0 +1,598 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree_utils.h"
#include "core/file_sys/fssystem/fssystem_pooled_buffer.h"
namespace FileSys {
namespace {
using Node = impl::BucketTreeNode<const s64*>;
static_assert(sizeof(Node) == sizeof(BucketTree::NodeHeader));
static_assert(std::is_trivial_v<Node>);
constexpr inline s32 NodeHeaderSize = sizeof(BucketTree::NodeHeader);
class StorageNode {
private:
class Offset {
public:
using difference_type = s64;
private:
s64 m_offset;
s32 m_stride;
public:
constexpr Offset(s64 offset, s32 stride) : m_offset(offset), m_stride(stride) {}
constexpr Offset& operator++() {
m_offset += m_stride;
return *this;
}
constexpr Offset operator++(int) {
Offset ret(*this);
m_offset += m_stride;
return ret;
}
constexpr Offset& operator--() {
m_offset -= m_stride;
return *this;
}
constexpr Offset operator--(int) {
Offset ret(*this);
m_offset -= m_stride;
return ret;
}
constexpr difference_type operator-(const Offset& rhs) const {
return (m_offset - rhs.m_offset) / m_stride;
}
constexpr Offset operator+(difference_type ofs) const {
return Offset(m_offset + ofs * m_stride, m_stride);
}
constexpr Offset operator-(difference_type ofs) const {
return Offset(m_offset - ofs * m_stride, m_stride);
}
constexpr Offset& operator+=(difference_type ofs) {
m_offset += ofs * m_stride;
return *this;
}
constexpr Offset& operator-=(difference_type ofs) {
m_offset -= ofs * m_stride;
return *this;
}
constexpr bool operator==(const Offset& rhs) const {
return m_offset == rhs.m_offset;
}
constexpr bool operator!=(const Offset& rhs) const {
return m_offset != rhs.m_offset;
}
constexpr s64 Get() const {
return m_offset;
}
};
private:
const Offset m_start;
const s32 m_count;
s32 m_index;
public:
StorageNode(size_t size, s32 count)
: m_start(NodeHeaderSize, static_cast<s32>(size)), m_count(count), m_index(-1) {}
StorageNode(s64 ofs, size_t size, s32 count)
: m_start(NodeHeaderSize + ofs, static_cast<s32>(size)), m_count(count), m_index(-1) {}
s32 GetIndex() const {
return m_index;
}
void Find(const char* buffer, s64 virtual_address) {
s32 end = m_count;
auto pos = m_start;
while (end > 0) {
auto half = end / 2;
auto mid = pos + half;
s64 offset = 0;
std::memcpy(std::addressof(offset), buffer + mid.Get(), sizeof(s64));
if (offset <= virtual_address) {
pos = mid + 1;
end -= half + 1;
} else {
end = half;
}
}
m_index = static_cast<s32>(pos - m_start) - 1;
}
Result Find(VirtualFile storage, s64 virtual_address) {
s32 end = m_count;
auto pos = m_start;
while (end > 0) {
auto half = end / 2;
auto mid = pos + half;
s64 offset = 0;
storage->ReadObject(std::addressof(offset), mid.Get());
if (offset <= virtual_address) {
pos = mid + 1;
end -= half + 1;
} else {
end = half;
}
}
m_index = static_cast<s32>(pos - m_start) - 1;
R_SUCCEED();
}
};
} // namespace
void BucketTree::Header::Format(s32 entry_count_) {
ASSERT(entry_count_ >= 0);
this->magic = Magic;
this->version = Version;
this->entry_count = entry_count_;
this->reserved = 0;
}
Result BucketTree::Header::Verify() const {
R_UNLESS(this->magic == Magic, ResultInvalidBucketTreeSignature);
R_UNLESS(this->entry_count >= 0, ResultInvalidBucketTreeEntryCount);
R_UNLESS(this->version <= Version, ResultUnsupportedVersion);
R_SUCCEED();
}
Result BucketTree::NodeHeader::Verify(s32 node_index, size_t node_size, size_t entry_size) const {
R_UNLESS(this->index == node_index, ResultInvalidBucketTreeNodeIndex);
R_UNLESS(entry_size != 0 && node_size >= entry_size + NodeHeaderSize, ResultInvalidSize);
const size_t max_entry_count = (node_size - NodeHeaderSize) / entry_size;
R_UNLESS(this->count > 0 && static_cast<size_t>(this->count) <= max_entry_count,
ResultInvalidBucketTreeNodeEntryCount);
R_UNLESS(this->offset >= 0, ResultInvalidBucketTreeNodeOffset);
R_SUCCEED();
}
Result BucketTree::Initialize(VirtualFile node_storage, VirtualFile entry_storage, size_t node_size,
size_t entry_size, s32 entry_count) {
// Validate preconditions.
ASSERT(entry_size >= sizeof(s64));
ASSERT(node_size >= entry_size + sizeof(NodeHeader));
ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
ASSERT(Common::IsPowerOfTwo(node_size));
ASSERT(!this->IsInitialized());
// Ensure valid entry count.
R_UNLESS(entry_count > 0, ResultInvalidArgument);
// Allocate node.
R_UNLESS(m_node_l1.Allocate(node_size), ResultBufferAllocationFailed);
ON_RESULT_FAILURE {
m_node_l1.Free(node_size);
};
// Read node.
node_storage->Read(reinterpret_cast<u8*>(m_node_l1.Get()), node_size);
// Verify node.
R_TRY(m_node_l1->Verify(0, node_size, sizeof(s64)));
// Validate offsets.
const auto offset_count = GetOffsetCount(node_size);
const auto entry_set_count = GetEntrySetCount(node_size, entry_size, entry_count);
const auto* const node = m_node_l1.Get<Node>();
s64 start_offset;
if (offset_count < entry_set_count && node->GetCount() < offset_count) {
start_offset = *node->GetEnd();
} else {
start_offset = *node->GetBegin();
}
const auto end_offset = node->GetEndOffset();
R_UNLESS(0 <= start_offset && start_offset <= node->GetBeginOffset(),
ResultInvalidBucketTreeEntryOffset);
R_UNLESS(start_offset < end_offset, ResultInvalidBucketTreeEntryOffset);
// Set member variables.
m_node_storage = node_storage;
m_entry_storage = entry_storage;
m_node_size = node_size;
m_entry_size = entry_size;
m_entry_count = entry_count;
m_offset_count = offset_count;
m_entry_set_count = entry_set_count;
m_offset_cache.offsets.start_offset = start_offset;
m_offset_cache.offsets.end_offset = end_offset;
m_offset_cache.is_initialized = true;
// Cancel guard.
R_SUCCEED();
}
void BucketTree::Initialize(size_t node_size, s64 end_offset) {
ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
ASSERT(Common::IsPowerOfTwo(node_size));
ASSERT(end_offset > 0);
ASSERT(!this->IsInitialized());
m_node_size = node_size;
m_offset_cache.offsets.start_offset = 0;
m_offset_cache.offsets.end_offset = end_offset;
m_offset_cache.is_initialized = true;
}
void BucketTree::Finalize() {
if (this->IsInitialized()) {
m_node_storage = VirtualFile();
m_entry_storage = VirtualFile();
m_node_l1.Free(m_node_size);
m_node_size = 0;
m_entry_size = 0;
m_entry_count = 0;
m_offset_count = 0;
m_entry_set_count = 0;
m_offset_cache.offsets.start_offset = 0;
m_offset_cache.offsets.end_offset = 0;
m_offset_cache.is_initialized = false;
}
}
Result BucketTree::Find(Visitor* visitor, s64 virtual_address) {
ASSERT(visitor != nullptr);
ASSERT(this->IsInitialized());
R_UNLESS(virtual_address >= 0, ResultInvalidOffset);
R_UNLESS(!this->IsEmpty(), ResultOutOfRange);
BucketTree::Offsets offsets;
R_TRY(this->GetOffsets(std::addressof(offsets)));
R_TRY(visitor->Initialize(this, offsets));
R_RETURN(visitor->Find(virtual_address));
}
Result BucketTree::InvalidateCache() {
// Reset our offsets.
m_offset_cache.is_initialized = false;
R_SUCCEED();
}
Result BucketTree::EnsureOffsetCache() {
// If we already have an offset cache, we're good.
R_SUCCEED_IF(m_offset_cache.is_initialized);
// Acquire exclusive right to edit the offset cache.
std::scoped_lock lk(m_offset_cache.mutex);
// Check again, to be sure.
R_SUCCEED_IF(m_offset_cache.is_initialized);
// Read/verify L1.
m_node_storage->Read(reinterpret_cast<u8*>(m_node_l1.Get()), m_node_size);
R_TRY(m_node_l1->Verify(0, m_node_size, sizeof(s64)));
// Get the node.
auto* const node = m_node_l1.Get<Node>();
s64 start_offset;
if (m_offset_count < m_entry_set_count && node->GetCount() < m_offset_count) {
start_offset = *node->GetEnd();
} else {
start_offset = *node->GetBegin();
}
const auto end_offset = node->GetEndOffset();
R_UNLESS(0 <= start_offset && start_offset <= node->GetBeginOffset(),
ResultInvalidBucketTreeEntryOffset);
R_UNLESS(start_offset < end_offset, ResultInvalidBucketTreeEntryOffset);
m_offset_cache.offsets.start_offset = start_offset;
m_offset_cache.offsets.end_offset = end_offset;
m_offset_cache.is_initialized = true;
R_SUCCEED();
}
Result BucketTree::Visitor::Initialize(const BucketTree* tree, const BucketTree::Offsets& offsets) {
ASSERT(tree != nullptr);
ASSERT(m_tree == nullptr || m_tree == tree);
if (m_entry == nullptr) {
m_entry = ::operator new(tree->m_entry_size);
R_UNLESS(m_entry != nullptr, ResultBufferAllocationFailed);
m_tree = tree;
m_offsets = offsets;
}
R_SUCCEED();
}
Result BucketTree::Visitor::MoveNext() {
R_UNLESS(this->IsValid(), ResultOutOfRange);
// Invalidate our index, and read the header for the next index.
auto entry_index = m_entry_index + 1;
if (entry_index == m_entry_set.info.count) {
const auto entry_set_index = m_entry_set.info.index + 1;
R_UNLESS(entry_set_index < m_entry_set_count, ResultOutOfRange);
m_entry_index = -1;
const auto end = m_entry_set.info.end;
const auto entry_set_size = m_tree->m_node_size;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
m_tree->m_entry_storage->ReadObject(std::addressof(m_entry_set), entry_set_offset);
R_TRY(m_entry_set.header.Verify(entry_set_index, entry_set_size, m_tree->m_entry_size));
R_UNLESS(m_entry_set.info.start == end && m_entry_set.info.start < m_entry_set.info.end,
ResultInvalidBucketTreeEntrySetOffset);
entry_index = 0;
} else {
m_entry_index = 1;
}
// Read the new entry.
const auto entry_size = m_tree->m_entry_size;
const auto entry_offset = impl::GetBucketTreeEntryOffset(
m_entry_set.info.index, m_tree->m_node_size, entry_size, entry_index);
m_tree->m_entry_storage->Read(reinterpret_cast<u8*>(m_entry), entry_size, entry_offset);
// Note that we changed index.
m_entry_index = entry_index;
R_SUCCEED();
}
Result BucketTree::Visitor::MovePrevious() {
R_UNLESS(this->IsValid(), ResultOutOfRange);
// Invalidate our index, and read the header for the previous index.
auto entry_index = m_entry_index;
if (entry_index == 0) {
R_UNLESS(m_entry_set.info.index > 0, ResultOutOfRange);
m_entry_index = -1;
const auto start = m_entry_set.info.start;
const auto entry_set_size = m_tree->m_node_size;
const auto entry_set_index = m_entry_set.info.index - 1;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
m_tree->m_entry_storage->ReadObject(std::addressof(m_entry_set), entry_set_offset);
R_TRY(m_entry_set.header.Verify(entry_set_index, entry_set_size, m_tree->m_entry_size));
R_UNLESS(m_entry_set.info.end == start && m_entry_set.info.start < m_entry_set.info.end,
ResultInvalidBucketTreeEntrySetOffset);
entry_index = m_entry_set.info.count;
} else {
m_entry_index = -1;
}
--entry_index;
// Read the new entry.
const auto entry_size = m_tree->m_entry_size;
const auto entry_offset = impl::GetBucketTreeEntryOffset(
m_entry_set.info.index, m_tree->m_node_size, entry_size, entry_index);
m_tree->m_entry_storage->Read(reinterpret_cast<u8*>(m_entry), entry_size, entry_offset);
// Note that we changed index.
m_entry_index = entry_index;
R_SUCCEED();
}
Result BucketTree::Visitor::Find(s64 virtual_address) {
ASSERT(m_tree != nullptr);
// Get the node.
const auto* const node = m_tree->m_node_l1.Get<Node>();
R_UNLESS(virtual_address < node->GetEndOffset(), ResultOutOfRange);
// Get the entry set index.
s32 entry_set_index = -1;
if (m_tree->IsExistOffsetL2OnL1() && virtual_address < node->GetBeginOffset()) {
const auto start = node->GetEnd();
const auto end = node->GetBegin() + m_tree->m_offset_count;
auto pos = std::upper_bound(start, end, virtual_address);
R_UNLESS(start < pos, ResultOutOfRange);
--pos;
entry_set_index = static_cast<s32>(pos - start);
} else {
const auto start = node->GetBegin();
const auto end = node->GetEnd();
auto pos = std::upper_bound(start, end, virtual_address);
R_UNLESS(start < pos, ResultOutOfRange);
--pos;
if (m_tree->IsExistL2()) {
const auto node_index = static_cast<s32>(pos - start);
R_UNLESS(0 <= node_index && node_index < m_tree->m_offset_count,
ResultInvalidBucketTreeNodeOffset);
R_TRY(this->FindEntrySet(std::addressof(entry_set_index), virtual_address, node_index));
} else {
entry_set_index = static_cast<s32>(pos - start);
}
}
// Validate the entry set index.
R_UNLESS(0 <= entry_set_index && entry_set_index < m_tree->m_entry_set_count,
ResultInvalidBucketTreeNodeOffset);
// Find the entry.
R_TRY(this->FindEntry(virtual_address, entry_set_index));
// Set count.
m_entry_set_count = m_tree->m_entry_set_count;
R_SUCCEED();
}
Result BucketTree::Visitor::FindEntrySet(s32* out_index, s64 virtual_address, s32 node_index) {
const auto node_size = m_tree->m_node_size;
PooledBuffer pool(node_size, 1);
if (node_size <= pool.GetSize()) {
R_RETURN(
this->FindEntrySetWithBuffer(out_index, virtual_address, node_index, pool.GetBuffer()));
} else {
pool.Deallocate();
R_RETURN(this->FindEntrySetWithoutBuffer(out_index, virtual_address, node_index));
}
}
Result BucketTree::Visitor::FindEntrySetWithBuffer(s32* out_index, s64 virtual_address,
s32 node_index, char* buffer) {
// Calculate node extents.
const auto node_size = m_tree->m_node_size;
const auto node_offset = (node_index + 1) * static_cast<s64>(node_size);
VirtualFile storage = m_tree->m_node_storage;
// Read the node.
storage->Read(reinterpret_cast<u8*>(buffer), node_size, node_offset);
// Validate the header.
NodeHeader header;
std::memcpy(std::addressof(header), buffer, NodeHeaderSize);
R_TRY(header.Verify(node_index, node_size, sizeof(s64)));
// Create the node, and find.
StorageNode node(sizeof(s64), header.count);
node.Find(buffer, virtual_address);
R_UNLESS(node.GetIndex() >= 0, ResultInvalidBucketTreeVirtualOffset);
// Return the index.
*out_index = static_cast<s32>(m_tree->GetEntrySetIndex(header.index, node.GetIndex()));
R_SUCCEED();
}
Result BucketTree::Visitor::FindEntrySetWithoutBuffer(s32* out_index, s64 virtual_address,
s32 node_index) {
// Calculate node extents.
const auto node_size = m_tree->m_node_size;
const auto node_offset = (node_index + 1) * static_cast<s64>(node_size);
VirtualFile storage = m_tree->m_node_storage;
// Read and validate the header.
NodeHeader header;
storage->ReadObject(std::addressof(header), node_offset);
R_TRY(header.Verify(node_index, node_size, sizeof(s64)));
// Create the node, and find.
StorageNode node(node_offset, sizeof(s64), header.count);
R_TRY(node.Find(storage, virtual_address));
R_UNLESS(node.GetIndex() >= 0, ResultOutOfRange);
// Return the index.
*out_index = static_cast<s32>(m_tree->GetEntrySetIndex(header.index, node.GetIndex()));
R_SUCCEED();
}
Result BucketTree::Visitor::FindEntry(s64 virtual_address, s32 entry_set_index) {
const auto entry_set_size = m_tree->m_node_size;
PooledBuffer pool(entry_set_size, 1);
if (entry_set_size <= pool.GetSize()) {
R_RETURN(this->FindEntryWithBuffer(virtual_address, entry_set_index, pool.GetBuffer()));
} else {
pool.Deallocate();
R_RETURN(this->FindEntryWithoutBuffer(virtual_address, entry_set_index));
}
}
Result BucketTree::Visitor::FindEntryWithBuffer(s64 virtual_address, s32 entry_set_index,
char* buffer) {
// Calculate entry set extents.
const auto entry_size = m_tree->m_entry_size;
const auto entry_set_size = m_tree->m_node_size;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
VirtualFile storage = m_tree->m_entry_storage;
// Read the entry set.
storage->Read(reinterpret_cast<u8*>(buffer), entry_set_size, entry_set_offset);
// Validate the entry_set.
EntrySetHeader entry_set;
std::memcpy(std::addressof(entry_set), buffer, sizeof(EntrySetHeader));
R_TRY(entry_set.header.Verify(entry_set_index, entry_set_size, entry_size));
// Create the node, and find.
StorageNode node(entry_size, entry_set.info.count);
node.Find(buffer, virtual_address);
R_UNLESS(node.GetIndex() >= 0, ResultOutOfRange);
// Copy the data into entry.
const auto entry_index = node.GetIndex();
const auto entry_offset = impl::GetBucketTreeEntryOffset(0, entry_size, entry_index);
std::memcpy(m_entry, buffer + entry_offset, entry_size);
// Set our entry set/index.
m_entry_set = entry_set;
m_entry_index = entry_index;
R_SUCCEED();
}
Result BucketTree::Visitor::FindEntryWithoutBuffer(s64 virtual_address, s32 entry_set_index) {
// Calculate entry set extents.
const auto entry_size = m_tree->m_entry_size;
const auto entry_set_size = m_tree->m_node_size;
const auto entry_set_offset = entry_set_index * static_cast<s64>(entry_set_size);
VirtualFile storage = m_tree->m_entry_storage;
// Read and validate the entry_set.
EntrySetHeader entry_set;
storage->ReadObject(std::addressof(entry_set), entry_set_offset);
R_TRY(entry_set.header.Verify(entry_set_index, entry_set_size, entry_size));
// Create the node, and find.
StorageNode node(entry_set_offset, entry_size, entry_set.info.count);
R_TRY(node.Find(storage, virtual_address));
R_UNLESS(node.GetIndex() >= 0, ResultOutOfRange);
// Copy the data into entry.
const auto entry_index = node.GetIndex();
const auto entry_offset =
impl::GetBucketTreeEntryOffset(entry_set_offset, entry_size, entry_index);
storage->Read(reinterpret_cast<u8*>(m_entry), entry_size, entry_offset);
// Set our entry set/index.
m_entry_set = entry_set;
m_entry_index = entry_index;
R_SUCCEED();
}
} // namespace FileSys

View File

@ -0,0 +1,417 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include "common/alignment.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/literals.h"
#include "core/file_sys/vfs.h"
#include "core/hle/result.h"
namespace FileSys {
using namespace Common::Literals;
class BucketTree {
YUZU_NON_COPYABLE(BucketTree);
YUZU_NON_MOVEABLE(BucketTree);
public:
static constexpr u32 Magic = Common::MakeMagic('B', 'K', 'T', 'R');
static constexpr u32 Version = 1;
static constexpr size_t NodeSizeMin = 1_KiB;
static constexpr size_t NodeSizeMax = 512_KiB;
public:
class Visitor;
struct Header {
u32 magic;
u32 version;
s32 entry_count;
s32 reserved;
void Format(s32 entry_count);
Result Verify() const;
};
static_assert(std::is_trivial_v<Header>);
static_assert(sizeof(Header) == 0x10);
struct NodeHeader {
s32 index;
s32 count;
s64 offset;
Result Verify(s32 node_index, size_t node_size, size_t entry_size) const;
};
static_assert(std::is_trivial_v<NodeHeader>);
static_assert(sizeof(NodeHeader) == 0x10);
struct Offsets {
s64 start_offset;
s64 end_offset;
constexpr bool IsInclude(s64 offset) const {
return this->start_offset <= offset && offset < this->end_offset;
}
constexpr bool IsInclude(s64 offset, s64 size) const {
return size > 0 && this->start_offset <= offset && size <= (this->end_offset - offset);
}
};
static_assert(std::is_trivial_v<Offsets>);
static_assert(sizeof(Offsets) == 0x10);
struct OffsetCache {
Offsets offsets;
std::mutex mutex;
bool is_initialized;
OffsetCache() : offsets{-1, -1}, mutex(), is_initialized(false) {}
};
class ContinuousReadingInfo {
private:
size_t m_read_size;
s32 m_skip_count;
bool m_done;
public:
constexpr ContinuousReadingInfo() : m_read_size(), m_skip_count(), m_done() {}
constexpr void Reset() {
m_read_size = 0;
m_skip_count = 0;
m_done = false;
}
constexpr void SetSkipCount(s32 count) {
ASSERT(count >= 0);
m_skip_count = count;
}
constexpr s32 GetSkipCount() const {
return m_skip_count;
}
constexpr bool CheckNeedScan() {
return (--m_skip_count) <= 0;
}
constexpr void Done() {
m_read_size = 0;
m_done = true;
}
constexpr bool IsDone() const {
return m_done;
}
constexpr void SetReadSize(size_t size) {
m_read_size = size;
}
constexpr size_t GetReadSize() const {
return m_read_size;
}
constexpr bool CanDo() const {
return m_read_size > 0;
}
};
private:
class NodeBuffer {
YUZU_NON_COPYABLE(NodeBuffer);
private:
void* m_header;
public:
NodeBuffer() : m_header() {}
~NodeBuffer() {
ASSERT(m_header == nullptr);
}
NodeBuffer(NodeBuffer&& rhs) : m_header(rhs.m_header) {
rhs.m_header = nullptr;
}
NodeBuffer& operator=(NodeBuffer&& rhs) {
if (this != std::addressof(rhs)) {
ASSERT(m_header == nullptr);
m_header = rhs.m_header;
rhs.m_header = nullptr;
}
return *this;
}
bool Allocate(size_t node_size) {
ASSERT(m_header == nullptr);
m_header = ::operator new(node_size, std::align_val_t{sizeof(s64)});
// ASSERT(Common::IsAligned(m_header, sizeof(s64)));
return m_header != nullptr;
}
void Free(size_t node_size) {
if (m_header) {
::operator delete(m_header, std::align_val_t{sizeof(s64)});
m_header = nullptr;
}
}
void FillZero(size_t node_size) const {
if (m_header) {
std::memset(m_header, 0, node_size);
}
}
NodeHeader* Get() const {
return reinterpret_cast<NodeHeader*>(m_header);
}
NodeHeader* operator->() const {
return this->Get();
}
template <typename T>
T* Get() const {
static_assert(std::is_trivial_v<T>);
static_assert(sizeof(T) == sizeof(NodeHeader));
return reinterpret_cast<T*>(m_header);
}
};
private:
static constexpr s32 GetEntryCount(size_t node_size, size_t entry_size) {
return static_cast<s32>((node_size - sizeof(NodeHeader)) / entry_size);
}
static constexpr s32 GetOffsetCount(size_t node_size) {
return static_cast<s32>((node_size - sizeof(NodeHeader)) / sizeof(s64));
}
static constexpr s32 GetEntrySetCount(size_t node_size, size_t entry_size, s32 entry_count) {
const s32 entry_count_per_node = GetEntryCount(node_size, entry_size);
return Common::DivideUp(entry_count, entry_count_per_node);
}
static constexpr s32 GetNodeL2Count(size_t node_size, size_t entry_size, s32 entry_count) {
const s32 offset_count_per_node = GetOffsetCount(node_size);
const s32 entry_set_count = GetEntrySetCount(node_size, entry_size, entry_count);
if (entry_set_count <= offset_count_per_node) {
return 0;
}
const s32 node_l2_count = Common::DivideUp(entry_set_count, offset_count_per_node);
ASSERT(node_l2_count <= offset_count_per_node);
return Common::DivideUp(entry_set_count - (offset_count_per_node - (node_l2_count - 1)),
offset_count_per_node);
}
public:
static constexpr s64 QueryHeaderStorageSize() {
return sizeof(Header);
}
static constexpr s64 QueryNodeStorageSize(size_t node_size, size_t entry_size,
s32 entry_count) {
ASSERT(entry_size >= sizeof(s64));
ASSERT(node_size >= entry_size + sizeof(NodeHeader));
ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
ASSERT(Common::IsPowerOfTwo(node_size));
ASSERT(entry_count >= 0);
if (entry_count <= 0) {
return 0;
}
return (1 + GetNodeL2Count(node_size, entry_size, entry_count)) *
static_cast<s64>(node_size);
}
static constexpr s64 QueryEntryStorageSize(size_t node_size, size_t entry_size,
s32 entry_count) {
ASSERT(entry_size >= sizeof(s64));
ASSERT(node_size >= entry_size + sizeof(NodeHeader));
ASSERT(NodeSizeMin <= node_size && node_size <= NodeSizeMax);
ASSERT(Common::IsPowerOfTwo(node_size));
ASSERT(entry_count >= 0);
if (entry_count <= 0) {
return 0;
}
return GetEntrySetCount(node_size, entry_size, entry_count) * static_cast<s64>(node_size);
}
private:
mutable VirtualFile m_node_storage;
mutable VirtualFile m_entry_storage;
NodeBuffer m_node_l1;
size_t m_node_size;
size_t m_entry_size;
s32 m_entry_count;
s32 m_offset_count;
s32 m_entry_set_count;
OffsetCache m_offset_cache;
public:
BucketTree()
: m_node_storage(), m_entry_storage(), m_node_l1(), m_node_size(), m_entry_size(),
m_entry_count(), m_offset_count(), m_entry_set_count(), m_offset_cache() {}
~BucketTree() {
this->Finalize();
}
Result Initialize(VirtualFile node_storage, VirtualFile entry_storage, size_t node_size,
size_t entry_size, s32 entry_count);
void Initialize(size_t node_size, s64 end_offset);
void Finalize();
bool IsInitialized() const {
return m_node_size > 0;
}
bool IsEmpty() const {
return m_entry_size == 0;
}
Result Find(Visitor* visitor, s64 virtual_address);
Result InvalidateCache();
s32 GetEntryCount() const {
return m_entry_count;
}
Result GetOffsets(Offsets* out) {
// Ensure we have an offset cache.
R_TRY(this->EnsureOffsetCache());
// Set the output.
*out = m_offset_cache.offsets;
R_SUCCEED();
}
private:
template <typename EntryType>
struct ContinuousReadingParam {
s64 offset;
size_t size;
NodeHeader entry_set;
s32 entry_index;
Offsets offsets;
EntryType entry;
};
private:
template <typename EntryType>
Result ScanContinuousReading(ContinuousReadingInfo* out_info,
const ContinuousReadingParam<EntryType>& param) const;
bool IsExistL2() const {
return m_offset_count < m_entry_set_count;
}
bool IsExistOffsetL2OnL1() const {
return this->IsExistL2() && m_node_l1->count < m_offset_count;
}
s64 GetEntrySetIndex(s32 node_index, s32 offset_index) const {
return (m_offset_count - m_node_l1->count) + (m_offset_count * node_index) + offset_index;
}
Result EnsureOffsetCache();
};
class BucketTree::Visitor {
YUZU_NON_COPYABLE(Visitor);
YUZU_NON_MOVEABLE(Visitor);
private:
friend class BucketTree;
union EntrySetHeader {
NodeHeader header;
struct Info {
s32 index;
s32 count;
s64 end;
s64 start;
} info;
static_assert(std::is_trivial_v<Info>);
};
static_assert(std::is_trivial_v<EntrySetHeader>);
private:
const BucketTree* m_tree;
BucketTree::Offsets m_offsets;
void* m_entry;
s32 m_entry_index;
s32 m_entry_set_count;
EntrySetHeader m_entry_set;
public:
constexpr Visitor()
: m_tree(), m_entry(), m_entry_index(-1), m_entry_set_count(), m_entry_set{} {}
~Visitor() {
if (m_entry != nullptr) {
::operator delete(m_entry, m_tree->m_entry_size);
m_tree = nullptr;
m_entry = nullptr;
}
}
bool IsValid() const {
return m_entry_index >= 0;
}
bool CanMoveNext() const {
return this->IsValid() && (m_entry_index + 1 < m_entry_set.info.count ||
m_entry_set.info.index + 1 < m_entry_set_count);
}
bool CanMovePrevious() const {
return this->IsValid() && (m_entry_index > 0 || m_entry_set.info.index > 0);
}
Result MoveNext();
Result MovePrevious();
template <typename EntryType>
Result ScanContinuousReading(ContinuousReadingInfo* out_info, s64 offset, size_t size) const;
const void* Get() const {
ASSERT(this->IsValid());
return m_entry;
}
template <typename T>
const T* Get() const {
ASSERT(this->IsValid());
return reinterpret_cast<const T*>(m_entry);
}
const BucketTree* GetTree() const {
return m_tree;
}
private:
Result Initialize(const BucketTree* tree, const BucketTree::Offsets& offsets);
Result Find(s64 virtual_address);
Result FindEntrySet(s32* out_index, s64 virtual_address, s32 node_index);
Result FindEntrySetWithBuffer(s32* out_index, s64 virtual_address, s32 node_index,
char* buffer);
Result FindEntrySetWithoutBuffer(s32* out_index, s64 virtual_address, s32 node_index);
Result FindEntry(s64 virtual_address, s32 entry_set_index);
Result FindEntryWithBuffer(s64 virtual_address, s32 entry_set_index, char* buffer);
Result FindEntryWithoutBuffer(s64 virtual_address, s32 entry_set_index);
};
} // namespace FileSys

View File

@ -0,0 +1,170 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree_utils.h"
#include "core/file_sys/fssystem/fssystem_pooled_buffer.h"
namespace FileSys {
template <typename EntryType>
Result BucketTree::ScanContinuousReading(ContinuousReadingInfo* out_info,
const ContinuousReadingParam<EntryType>& param) const {
static_assert(std::is_trivial_v<ContinuousReadingParam<EntryType>>);
// Validate our preconditions.
ASSERT(this->IsInitialized());
ASSERT(out_info != nullptr);
ASSERT(m_entry_size == sizeof(EntryType));
// Reset the output.
out_info->Reset();
// If there's nothing to read, we're done.
R_SUCCEED_IF(param.size == 0);
// If we're reading a fragment, we're done.
R_SUCCEED_IF(param.entry.IsFragment());
// Validate the first entry.
auto entry = param.entry;
auto cur_offset = param.offset;
R_UNLESS(entry.GetVirtualOffset() <= cur_offset, ResultOutOfRange);
// Create a pooled buffer for our scan.
PooledBuffer pool(m_node_size, 1);
char* buffer = nullptr;
s64 entry_storage_size = m_entry_storage->GetSize();
// Read the node.
if (m_node_size <= pool.GetSize()) {
buffer = pool.GetBuffer();
const auto ofs = param.entry_set.index * static_cast<s64>(m_node_size);
R_UNLESS(m_node_size + ofs <= static_cast<size_t>(entry_storage_size),
ResultInvalidBucketTreeNodeEntryCount);
m_entry_storage->Read(reinterpret_cast<u8*>(buffer), m_node_size, ofs);
}
// Calculate extents.
const auto end_offset = cur_offset + static_cast<s64>(param.size);
s64 phys_offset = entry.GetPhysicalOffset();
// Start merge tracking.
s64 merge_size = 0;
s64 readable_size = 0;
bool merged = false;
// Iterate.
auto entry_index = param.entry_index;
for (const auto entry_count = param.entry_set.count; entry_index < entry_count; ++entry_index) {
// If we're past the end, we're done.
if (end_offset <= cur_offset) {
break;
}
// Validate the entry offset.
const auto entry_offset = entry.GetVirtualOffset();
R_UNLESS(entry_offset <= cur_offset, ResultInvalidIndirectEntryOffset);
// Get the next entry.
EntryType next_entry = {};
s64 next_entry_offset;
if (entry_index + 1 < entry_count) {
if (buffer != nullptr) {
const auto ofs = impl::GetBucketTreeEntryOffset(0, m_entry_size, entry_index + 1);
std::memcpy(std::addressof(next_entry), buffer + ofs, m_entry_size);
} else {
const auto ofs = impl::GetBucketTreeEntryOffset(param.entry_set.index, m_node_size,
m_entry_size, entry_index + 1);
m_entry_storage->ReadObject(std::addressof(next_entry), ofs);
}
next_entry_offset = next_entry.GetVirtualOffset();
R_UNLESS(param.offsets.IsInclude(next_entry_offset), ResultInvalidIndirectEntryOffset);
} else {
next_entry_offset = param.entry_set.offset;
}
// Validate the next entry offset.
R_UNLESS(cur_offset < next_entry_offset, ResultInvalidIndirectEntryOffset);
// Determine the much data there is.
const auto data_size = next_entry_offset - cur_offset;
ASSERT(data_size > 0);
// Determine how much data we should read.
const auto remaining_size = end_offset - cur_offset;
const size_t read_size = static_cast<size_t>(std::min(data_size, remaining_size));
ASSERT(read_size <= param.size);
// Update our merge tracking.
if (entry.IsFragment()) {
// If we can't merge, stop looping.
if (EntryType::FragmentSizeMax <= read_size || remaining_size <= data_size) {
break;
}
// Otherwise, add the current size to the merge size.
merge_size += read_size;
} else {
// If we can't merge, stop looping.
if (phys_offset != entry.GetPhysicalOffset()) {
break;
}
// Add the size to the readable amount.
readable_size += merge_size + read_size;
ASSERT(readable_size <= static_cast<s64>(param.size));
// Update whether we've merged.
merged |= merge_size > 0;
merge_size = 0;
}
// Advance.
cur_offset += read_size;
ASSERT(cur_offset <= end_offset);
phys_offset += next_entry_offset - entry_offset;
entry = next_entry;
}
// If we merged, set our readable size.
if (merged) {
out_info->SetReadSize(static_cast<size_t>(readable_size));
}
out_info->SetSkipCount(entry_index - param.entry_index);
R_SUCCEED();
}
template <typename EntryType>
Result BucketTree::Visitor::ScanContinuousReading(ContinuousReadingInfo* out_info, s64 offset,
size_t size) const {
static_assert(std::is_trivial_v<EntryType>);
ASSERT(this->IsValid());
// Create our parameters.
ContinuousReadingParam<EntryType> param = {
.offset = offset,
.size = size,
.entry_set = m_entry_set.header,
.entry_index = m_entry_index,
.offsets{},
.entry{},
};
std::memcpy(std::addressof(param.offsets), std::addressof(m_offsets),
sizeof(BucketTree::Offsets));
std::memcpy(std::addressof(param.entry), m_entry, sizeof(EntryType));
// Scan.
R_RETURN(m_tree->ScanContinuousReading<EntryType>(out_info, param));
}
} // namespace FileSys

View File

@ -0,0 +1,110 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/fssystem/fssystem_bucket_tree.h"
namespace FileSys::impl {
class SafeValue {
public:
static s64 GetInt64(const void* ptr) {
s64 value;
std::memcpy(std::addressof(value), ptr, sizeof(s64));
return value;
}
static s64 GetInt64(const s64* ptr) {
return GetInt64(static_cast<const void*>(ptr));
}
static s64 GetInt64(const s64& v) {
return GetInt64(std::addressof(v));
}
static void SetInt64(void* dst, const void* src) {
std::memcpy(dst, src, sizeof(s64));
}
static void SetInt64(void* dst, const s64* src) {
return SetInt64(dst, static_cast<const void*>(src));
}
static void SetInt64(void* dst, const s64& v) {
return SetInt64(dst, std::addressof(v));
}
};
template <typename IteratorType>
struct BucketTreeNode {
using Header = BucketTree::NodeHeader;
Header header;
s32 GetCount() const {
return this->header.count;
}
void* GetArray() {
return std::addressof(this->header) + 1;
}
template <typename T>
T* GetArray() {
return reinterpret_cast<T*>(this->GetArray());
}
const void* GetArray() const {
return std::addressof(this->header) + 1;
}
template <typename T>
const T* GetArray() const {
return reinterpret_cast<const T*>(this->GetArray());
}
s64 GetBeginOffset() const {
return *this->GetArray<s64>();
}
s64 GetEndOffset() const {
return this->header.offset;
}
IteratorType GetBegin() {
return IteratorType(this->GetArray<s64>());
}
IteratorType GetEnd() {
return IteratorType(this->GetArray<s64>()) + this->header.count;
}
IteratorType GetBegin() const {
return IteratorType(this->GetArray<s64>());
}
IteratorType GetEnd() const {
return IteratorType(this->GetArray<s64>()) + this->header.count;
}
IteratorType GetBegin(size_t entry_size) {
return IteratorType(this->GetArray(), entry_size);
}
IteratorType GetEnd(size_t entry_size) {
return IteratorType(this->GetArray(), entry_size) + this->header.count;
}
IteratorType GetBegin(size_t entry_size) const {
return IteratorType(this->GetArray(), entry_size);
}
IteratorType GetEnd(size_t entry_size) const {
return IteratorType(this->GetArray(), entry_size) + this->header.count;
}
};
constexpr inline s64 GetBucketTreeEntryOffset(s64 entry_set_offset, size_t entry_size,
s32 entry_index) {
return entry_set_offset + sizeof(BucketTree::NodeHeader) +
entry_index * static_cast<s64>(entry_size);
}
constexpr inline s64 GetBucketTreeEntryOffset(s32 entry_set_index, size_t node_size,
size_t entry_size, s32 entry_index) {
return GetBucketTreeEntryOffset(entry_set_index * static_cast<s64>(node_size), entry_size,
entry_index);
}
} // namespace FileSys::impl

View File

@ -0,0 +1,960 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/literals.h"
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree.h"
#include "core/file_sys/fssystem/fssystem_compression_common.h"
#include "core/file_sys/fssystem/fssystem_pooled_buffer.h"
#include "core/file_sys/vfs.h"
namespace FileSys {
using namespace Common::Literals;
class CompressedStorage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(CompressedStorage);
YUZU_NON_MOVEABLE(CompressedStorage);
public:
static constexpr size_t NodeSize = 16_KiB;
struct Entry {
s64 virt_offset;
s64 phys_offset;
CompressionType compression_type;
s32 phys_size;
s64 GetPhysicalSize() const {
return this->phys_size;
}
};
static_assert(std::is_trivial_v<Entry>);
static_assert(sizeof(Entry) == 0x18);
public:
static constexpr s64 QueryNodeStorageSize(s32 entry_count) {
return BucketTree::QueryNodeStorageSize(NodeSize, sizeof(Entry), entry_count);
}
static constexpr s64 QueryEntryStorageSize(s32 entry_count) {
return BucketTree::QueryEntryStorageSize(NodeSize, sizeof(Entry), entry_count);
}
private:
class CompressedStorageCore {
YUZU_NON_COPYABLE(CompressedStorageCore);
YUZU_NON_MOVEABLE(CompressedStorageCore);
private:
size_t m_block_size_max;
size_t m_continuous_reading_size_max;
BucketTree m_table;
VirtualFile m_data_storage;
GetDecompressorFunction m_get_decompressor_function;
public:
CompressedStorageCore() : m_table(), m_data_storage() {}
~CompressedStorageCore() {
this->Finalize();
}
public:
Result Initialize(VirtualFile data_storage, VirtualFile node_storage,
VirtualFile entry_storage, s32 bktr_entry_count, size_t block_size_max,
size_t continuous_reading_size_max,
GetDecompressorFunction get_decompressor) {
// Check pre-conditions.
ASSERT(0 < block_size_max);
ASSERT(block_size_max <= continuous_reading_size_max);
ASSERT(get_decompressor != nullptr);
// Initialize our entry table.
R_TRY(m_table.Initialize(node_storage, entry_storage, NodeSize, sizeof(Entry),
bktr_entry_count));
// Set our other fields.
m_block_size_max = block_size_max;
m_continuous_reading_size_max = continuous_reading_size_max;
m_data_storage = data_storage;
m_get_decompressor_function = get_decompressor;
R_SUCCEED();
}
void Finalize() {
if (this->IsInitialized()) {
m_table.Finalize();
m_data_storage = VirtualFile();
}
}
VirtualFile GetDataStorage() {
return m_data_storage;
}
Result GetDataStorageSize(s64* out) {
// Check pre-conditions.
ASSERT(out != nullptr);
// Get size.
*out = m_data_storage->GetSize();
R_SUCCEED();
}
BucketTree& GetEntryTable() {
return m_table;
}
Result GetEntryList(Entry* out_entries, s32* out_read_count, s32 max_entry_count,
s64 offset, s64 size) {
// Check pre-conditions.
ASSERT(offset >= 0);
ASSERT(size >= 0);
ASSERT(this->IsInitialized());
// Check that we can output the count.
R_UNLESS(out_read_count != nullptr, ResultNullptrArgument);
// Check that we have anything to read at all.
R_SUCCEED_IF(size == 0);
// Check that either we have a buffer, or this is to determine how many we need.
if (max_entry_count != 0) {
R_UNLESS(out_entries != nullptr, ResultNullptrArgument);
}
// Get the table offsets.
BucketTree::Offsets table_offsets;
R_TRY(m_table.GetOffsets(std::addressof(table_offsets)));
// Validate arguments.
R_UNLESS(table_offsets.IsInclude(offset, size), ResultOutOfRange);
// Find the offset in our tree.
BucketTree::Visitor visitor;
R_TRY(m_table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->virt_offset;
R_UNLESS(0 <= entry_offset && table_offsets.IsInclude(entry_offset),
ResultUnexpectedInCompressedStorageA);
}
// Get the entries.
const auto end_offset = offset + size;
s32 read_count = 0;
while (visitor.Get<Entry>()->virt_offset < end_offset) {
// If we should be setting the output, do so.
if (max_entry_count != 0) {
// Ensure we only read as many entries as we can.
if (read_count >= max_entry_count) {
break;
}
// Set the current output entry.
out_entries[read_count] = *visitor.Get<Entry>();
}
// Increase the read count.
++read_count;
// If we're at the end, we're done.
if (!visitor.CanMoveNext()) {
break;
}
// Move to the next entry.
R_TRY(visitor.MoveNext());
}
// Set the output read count.
*out_read_count = read_count;
R_SUCCEED();
}
Result GetSize(s64* out) {
// Check pre-conditions.
ASSERT(out != nullptr);
// Get our table offsets.
BucketTree::Offsets offsets;
R_TRY(m_table.GetOffsets(std::addressof(offsets)));
// Set the output.
*out = offsets.end_offset;
R_SUCCEED();
}
Result OperatePerEntry(s64 offset, s64 size, auto f) {
// Check pre-conditions.
ASSERT(offset >= 0);
ASSERT(size >= 0);
ASSERT(this->IsInitialized());
// Succeed if there's nothing to operate on.
R_SUCCEED_IF(size == 0);
// Get the table offsets.
BucketTree::Offsets table_offsets;
R_TRY(m_table.GetOffsets(std::addressof(table_offsets)));
// Validate arguments.
R_UNLESS(table_offsets.IsInclude(offset, size), ResultOutOfRange);
// Find the offset in our tree.
BucketTree::Visitor visitor;
R_TRY(m_table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->virt_offset;
R_UNLESS(0 <= entry_offset && table_offsets.IsInclude(entry_offset),
ResultUnexpectedInCompressedStorageA);
}
// Prepare to operate in chunks.
auto cur_offset = offset;
const auto end_offset = offset + static_cast<s64>(size);
while (cur_offset < end_offset) {
// Get the current entry.
const auto cur_entry = *visitor.Get<Entry>();
// Get and validate the entry's offset.
const auto cur_entry_offset = cur_entry.virt_offset;
R_UNLESS(cur_entry_offset <= cur_offset, ResultUnexpectedInCompressedStorageA);
// Get and validate the next entry offset.
s64 next_entry_offset;
if (visitor.CanMoveNext()) {
R_TRY(visitor.MoveNext());
next_entry_offset = visitor.Get<Entry>()->virt_offset;
R_UNLESS(table_offsets.IsInclude(next_entry_offset),
ResultUnexpectedInCompressedStorageA);
} else {
next_entry_offset = table_offsets.end_offset;
}
R_UNLESS(cur_offset < next_entry_offset, ResultUnexpectedInCompressedStorageA);
// Get the offset of the entry in the data we read.
const auto data_offset = cur_offset - cur_entry_offset;
const auto data_size = (next_entry_offset - cur_entry_offset);
ASSERT(data_size > 0);
// Determine how much is left.
const auto remaining_size = end_offset - cur_offset;
const auto cur_size = std::min<s64>(remaining_size, data_size - data_offset);
ASSERT(cur_size <= size);
// Get the data storage size.
s64 storage_size = m_data_storage->GetSize();
// Check that our read remains naively physically in bounds.
R_UNLESS(0 <= cur_entry.phys_offset && cur_entry.phys_offset <= storage_size,
ResultUnexpectedInCompressedStorageC);
// If we have any compression, verify that we remain physically in bounds.
if (cur_entry.compression_type != CompressionType::None) {
R_UNLESS(cur_entry.phys_offset + cur_entry.GetPhysicalSize() <= storage_size,
ResultUnexpectedInCompressedStorageC);
}
// Check that block alignment requirements are met.
if (CompressionTypeUtility::IsBlockAlignmentRequired(cur_entry.compression_type)) {
R_UNLESS(Common::IsAligned(cur_entry.phys_offset, CompressionBlockAlignment),
ResultUnexpectedInCompressedStorageA);
}
// Invoke the operator.
bool is_continuous = true;
R_TRY(
f(std::addressof(is_continuous), cur_entry, data_size, data_offset, cur_size));
// If not continuous, we're done.
if (!is_continuous) {
break;
}
// Advance.
cur_offset += cur_size;
}
R_SUCCEED();
}
public:
using ReadImplFunction = std::function<Result(void*, size_t)>;
using ReadFunction = std::function<Result(size_t, const ReadImplFunction&)>;
public:
Result Read(s64 offset, s64 size, const ReadFunction& read_func) {
// Check pre-conditions.
ASSERT(offset >= 0);
ASSERT(this->IsInitialized());
// Succeed immediately, if we hvae nothing to read.
R_SUCCEED_IF(size == 0);
// Declare read lambda.
constexpr int EntriesCountMax = 0x80;
struct Entries {
CompressionType compression_type;
u32 gap_from_prev;
u32 physical_size;
u32 virtual_size;
};
Entries entries[EntriesCountMax];
s32 entry_count = 0;
Entry prev_entry = {
.virt_offset = -1,
};
bool will_allocate_pooled_buffer = false;
s64 required_access_physical_offset = 0;
s64 required_access_physical_size = 0;
auto PerformRequiredRead = [&]() -> Result {
// If there are no entries, we have nothing to do.
R_SUCCEED_IF(entry_count == 0);
// Get the remaining size in a convenient form.
const size_t total_required_size =
static_cast<size_t>(required_access_physical_size);
// Perform the read based on whether we need to allocate a buffer.
if (will_allocate_pooled_buffer) {
// Allocate a pooled buffer.
PooledBuffer pooled_buffer;
if (pooled_buffer.GetAllocatableSizeMax() >= total_required_size) {
pooled_buffer.Allocate(total_required_size, m_block_size_max);
} else {
pooled_buffer.AllocateParticularlyLarge(
std::min<size_t>(
total_required_size,
PooledBuffer::GetAllocatableParticularlyLargeSizeMax()),
m_block_size_max);
}
// Read each of the entries.
for (s32 entry_idx = 0; entry_idx < entry_count; ++entry_idx) {
// Determine the current read size.
bool will_use_pooled_buffer = false;
const size_t cur_read_size = [&]() -> size_t {
if (const size_t target_entry_size =
static_cast<size_t>(entries[entry_idx].physical_size) +
static_cast<size_t>(entries[entry_idx].gap_from_prev);
target_entry_size <= pooled_buffer.GetSize()) {
// We'll be using the pooled buffer.
will_use_pooled_buffer = true;
// Determine how much we can read.
const size_t max_size = std::min<size_t>(
required_access_physical_size, pooled_buffer.GetSize());
size_t read_size = 0;
for (auto n = entry_idx; n < entry_count; ++n) {
const size_t cur_entry_size =
static_cast<size_t>(entries[n].physical_size) +
static_cast<size_t>(entries[n].gap_from_prev);
if (read_size + cur_entry_size > max_size) {
break;
}
read_size += cur_entry_size;
}
return read_size;
} else {
// If we don't fit, we must be uncompressed.
ASSERT(entries[entry_idx].compression_type ==
CompressionType::None);
// We can perform the whole of an uncompressed read directly.
return entries[entry_idx].virtual_size;
}
}();
// Perform the read based on whether or not we'll use the pooled buffer.
if (will_use_pooled_buffer) {
// Read the compressed data into the pooled buffer.
auto* const buffer = pooled_buffer.GetBuffer();
m_data_storage->Read(reinterpret_cast<u8*>(buffer), cur_read_size,
required_access_physical_offset);
// Decompress the data.
size_t buffer_offset;
for (buffer_offset = 0;
entry_idx < entry_count &&
((static_cast<size_t>(entries[entry_idx].physical_size) +
static_cast<size_t>(entries[entry_idx].gap_from_prev)) == 0 ||
buffer_offset < cur_read_size);
buffer_offset += entries[entry_idx++].physical_size) {
// Advance by the relevant gap.
buffer_offset += entries[entry_idx].gap_from_prev;
const auto compression_type = entries[entry_idx].compression_type;
switch (compression_type) {
case CompressionType::None: {
// Check that we can remain within bounds.
ASSERT(buffer_offset + entries[entry_idx].virtual_size <=
cur_read_size);
// Perform no decompression.
R_TRY(read_func(
entries[entry_idx].virtual_size,
[&](void* dst, size_t dst_size) -> Result {
// Check that the size is valid.
ASSERT(dst_size == entries[entry_idx].virtual_size);
// We have no compression, so just copy the data
// out.
std::memcpy(dst, buffer + buffer_offset,
entries[entry_idx].virtual_size);
R_SUCCEED();
}));
break;
}
case CompressionType::Zeros: {
// Check that we can remain within bounds.
ASSERT(buffer_offset <= cur_read_size);
// Zero the memory.
R_TRY(read_func(
entries[entry_idx].virtual_size,
[&](void* dst, size_t dst_size) -> Result {
// Check that the size is valid.
ASSERT(dst_size == entries[entry_idx].virtual_size);
// The data is zeroes, so zero the buffer.
std::memset(dst, 0, entries[entry_idx].virtual_size);
R_SUCCEED();
}));
break;
}
default: {
// Check that we can remain within bounds.
ASSERT(buffer_offset + entries[entry_idx].physical_size <=
cur_read_size);
// Get the decompressor.
const auto decompressor =
this->GetDecompressor(compression_type);
R_UNLESS(decompressor != nullptr,
ResultUnexpectedInCompressedStorageB);
// Decompress the data.
R_TRY(read_func(entries[entry_idx].virtual_size,
[&](void* dst, size_t dst_size) -> Result {
// Check that the size is valid.
ASSERT(dst_size ==
entries[entry_idx].virtual_size);
// Perform the decompression.
R_RETURN(decompressor(
dst, entries[entry_idx].virtual_size,
buffer + buffer_offset,
entries[entry_idx].physical_size));
}));
break;
}
}
}
// Check that we processed the correct amount of data.
ASSERT(buffer_offset == cur_read_size);
} else {
// Account for the gap from the previous entry.
required_access_physical_offset += entries[entry_idx].gap_from_prev;
required_access_physical_size -= entries[entry_idx].gap_from_prev;
// We don't need the buffer (as the data is uncompressed), so just
// execute the read.
R_TRY(
read_func(cur_read_size, [&](void* dst, size_t dst_size) -> Result {
// Check that the size is valid.
ASSERT(dst_size == cur_read_size);
// Perform the read.
m_data_storage->Read(reinterpret_cast<u8*>(dst), cur_read_size,
required_access_physical_offset);
R_SUCCEED();
}));
}
// Advance on.
required_access_physical_offset += cur_read_size;
required_access_physical_size -= cur_read_size;
}
// Verify that we have nothing remaining to read.
ASSERT(required_access_physical_size == 0);
R_SUCCEED();
} else {
// We don't need a buffer, so just execute the read.
R_TRY(read_func(total_required_size, [&](void* dst, size_t dst_size) -> Result {
// Check that the size is valid.
ASSERT(dst_size == total_required_size);
// Perform the read.
m_data_storage->Read(reinterpret_cast<u8*>(dst), total_required_size,
required_access_physical_offset);
R_SUCCEED();
}));
}
R_SUCCEED();
};
R_TRY(this->OperatePerEntry(
offset, size,
[&](bool* out_continuous, const Entry& entry, s64 virtual_data_size,
s64 data_offset, s64 read_size) -> Result {
// Determine the physical extents.
s64 physical_offset, physical_size;
if (CompressionTypeUtility::IsRandomAccessible(entry.compression_type)) {
physical_offset = entry.phys_offset + data_offset;
physical_size = read_size;
} else {
physical_offset = entry.phys_offset;
physical_size = entry.GetPhysicalSize();
}
// If we have a pending data storage operation, perform it if we have to.
const s64 required_access_physical_end =
required_access_physical_offset + required_access_physical_size;
if (required_access_physical_size > 0) {
const bool required_by_gap =
!(required_access_physical_end <= physical_offset &&
physical_offset <= Common::AlignUp(required_access_physical_end,
CompressionBlockAlignment));
const bool required_by_continuous_size =
((physical_size + physical_offset) - required_access_physical_end) +
required_access_physical_size >
static_cast<s64>(m_continuous_reading_size_max);
const bool required_by_entry_count = entry_count == EntriesCountMax;
if (required_by_gap || required_by_continuous_size ||
required_by_entry_count) {
// Check that our planned access is sane.
ASSERT(!will_allocate_pooled_buffer ||
required_access_physical_size <=
static_cast<s64>(m_continuous_reading_size_max));
// Perform the required read.
const Result rc = PerformRequiredRead();
if (R_FAILED(rc)) {
R_THROW(rc);
}
// Reset our requirements.
prev_entry.virt_offset = -1;
required_access_physical_size = 0;
entry_count = 0;
will_allocate_pooled_buffer = false;
}
}
// Sanity check that we're within bounds on entries.
ASSERT(entry_count < EntriesCountMax);
// Determine if a buffer allocation is needed.
if (entry.compression_type != CompressionType::None ||
(prev_entry.virt_offset >= 0 &&
entry.virt_offset - prev_entry.virt_offset !=
entry.phys_offset - prev_entry.phys_offset)) {
will_allocate_pooled_buffer = true;
}
// If we need to access the data storage, update our required access parameters.
if (CompressionTypeUtility::IsDataStorageAccessRequired(
entry.compression_type)) {
// If the data is compressed, ensure the access is sane.
if (entry.compression_type != CompressionType::None) {
R_UNLESS(data_offset == 0, ResultInvalidOffset);
R_UNLESS(virtual_data_size == read_size, ResultInvalidSize);
R_UNLESS(entry.GetPhysicalSize() <= static_cast<s64>(m_block_size_max),
ResultUnexpectedInCompressedStorageD);
}
// Update the required access parameters.
s64 gap_from_prev;
if (required_access_physical_size > 0) {
gap_from_prev = physical_offset - required_access_physical_end;
} else {
gap_from_prev = 0;
required_access_physical_offset = physical_offset;
}
required_access_physical_size += physical_size + gap_from_prev;
// Create an entry. to access the data storage.
entries[entry_count++] = {
.compression_type = entry.compression_type,
.gap_from_prev = static_cast<u32>(gap_from_prev),
.physical_size = static_cast<u32>(physical_size),
.virtual_size = static_cast<u32>(read_size),
};
} else {
// Verify that we're allowed to be operating on the non-data-storage-access
// type.
R_UNLESS(entry.compression_type == CompressionType::Zeros,
ResultUnexpectedInCompressedStorageB);
// If we have entries, create a fake entry for the zero region.
if (entry_count != 0) {
// We need to have a physical size.
R_UNLESS(entry.GetPhysicalSize() != 0,
ResultUnexpectedInCompressedStorageD);
// Create a fake entry.
entries[entry_count++] = {
.compression_type = CompressionType::Zeros,
.gap_from_prev = 0,
.physical_size = 0,
.virtual_size = static_cast<u32>(read_size),
};
} else {
// We have no entries, we we can just perform the read.
const Result rc =
read_func(static_cast<size_t>(read_size),
[&](void* dst, size_t dst_size) -> Result {
// Check the space we should zero is correct.
ASSERT(dst_size == static_cast<size_t>(read_size));
// Zero the memory.
std::memset(dst, 0, read_size);
R_SUCCEED();
});
if (R_FAILED(rc)) {
R_THROW(rc);
}
}
}
// Set the previous entry.
prev_entry = entry;
// We're continuous.
*out_continuous = true;
R_SUCCEED();
}));
// If we still have a pending access, perform it.
if (required_access_physical_size != 0) {
R_TRY(PerformRequiredRead());
}
R_SUCCEED();
}
private:
DecompressorFunction GetDecompressor(CompressionType type) const {
// Check that we can get a decompressor for the type.
if (CompressionTypeUtility::IsUnknownType(type)) {
return nullptr;
}
// Get the decompressor.
return m_get_decompressor_function(type);
}
bool IsInitialized() const {
return m_table.IsInitialized();
}
};
class CacheManager {
YUZU_NON_COPYABLE(CacheManager);
YUZU_NON_MOVEABLE(CacheManager);
private:
struct AccessRange {
s64 virtual_offset;
s64 virtual_size;
u32 physical_size;
bool is_block_alignment_required;
s64 GetEndVirtualOffset() const {
return this->virtual_offset + this->virtual_size;
}
};
static_assert(std::is_trivial_v<AccessRange>);
private:
s64 m_storage_size = 0;
public:
CacheManager() = default;
public:
Result Initialize(s64 storage_size, size_t cache_size_0, size_t cache_size_1,
size_t max_cache_entries) {
// Set our fields.
m_storage_size = storage_size;
R_SUCCEED();
}
Result Read(CompressedStorageCore& core, s64 offset, void* buffer, size_t size) {
// If we have nothing to read, succeed.
R_SUCCEED_IF(size == 0);
// Check that we have a buffer to read into.
R_UNLESS(buffer != nullptr, ResultNullptrArgument);
// Check that the read is in bounds.
R_UNLESS(offset <= m_storage_size, ResultInvalidOffset);
// Determine how much we can read.
const size_t read_size = std::min<size_t>(size, m_storage_size - offset);
// Create head/tail ranges.
AccessRange head_range = {};
AccessRange tail_range = {};
bool is_tail_set = false;
// Operate to determine the head range.
R_TRY(core.OperatePerEntry(
offset, 1,
[&](bool* out_continuous, const Entry& entry, s64 virtual_data_size,
s64 data_offset, s64 data_read_size) -> Result {
// Set the head range.
head_range = {
.virtual_offset = entry.virt_offset,
.virtual_size = virtual_data_size,
.physical_size = static_cast<u32>(entry.phys_size),
.is_block_alignment_required =
CompressionTypeUtility::IsBlockAlignmentRequired(
entry.compression_type),
};
// If required, set the tail range.
if (static_cast<s64>(offset + read_size) <=
entry.virt_offset + virtual_data_size) {
tail_range = {
.virtual_offset = entry.virt_offset,
.virtual_size = virtual_data_size,
.physical_size = static_cast<u32>(entry.phys_size),
.is_block_alignment_required =
CompressionTypeUtility::IsBlockAlignmentRequired(
entry.compression_type),
};
is_tail_set = true;
}
// We only want to determine the head range, so we're not continuous.
*out_continuous = false;
R_SUCCEED();
}));
// If necessary, determine the tail range.
if (!is_tail_set) {
R_TRY(core.OperatePerEntry(
offset + read_size - 1, 1,
[&](bool* out_continuous, const Entry& entry, s64 virtual_data_size,
s64 data_offset, s64 data_read_size) -> Result {
// Set the tail range.
tail_range = {
.virtual_offset = entry.virt_offset,
.virtual_size = virtual_data_size,
.physical_size = static_cast<u32>(entry.phys_size),
.is_block_alignment_required =
CompressionTypeUtility::IsBlockAlignmentRequired(
entry.compression_type),
};
// We only want to determine the tail range, so we're not continuous.
*out_continuous = false;
R_SUCCEED();
}));
}
// Begin performing the accesses.
s64 cur_offset = offset;
size_t cur_size = read_size;
char* cur_dst = static_cast<char*>(buffer);
// Determine our alignment.
const bool head_unaligned = head_range.is_block_alignment_required &&
(cur_offset != head_range.virtual_offset ||
static_cast<s64>(cur_size) < head_range.virtual_size);
const bool tail_unaligned = [&]() -> bool {
if (tail_range.is_block_alignment_required) {
if (static_cast<s64>(cur_size + cur_offset) ==
tail_range.GetEndVirtualOffset()) {
return false;
} else if (!head_unaligned) {
return true;
} else {
return head_range.GetEndVirtualOffset() <
static_cast<s64>(cur_size + cur_offset);
}
} else {
return false;
}
}();
// Determine start/end offsets.
const s64 start_offset =
head_range.is_block_alignment_required ? head_range.virtual_offset : cur_offset;
const s64 end_offset = tail_range.is_block_alignment_required
? tail_range.GetEndVirtualOffset()
: cur_offset + cur_size;
// Perform the read.
bool is_burst_reading = false;
R_TRY(core.Read(
start_offset, end_offset - start_offset,
[&](size_t size_buffer_required,
const CompressedStorageCore::ReadImplFunction& read_impl) -> Result {
// Determine whether we're burst reading.
const AccessRange* unaligned_range = nullptr;
if (!is_burst_reading) {
// Check whether we're using head, tail, or none as unaligned.
if (head_unaligned && head_range.virtual_offset <= cur_offset &&
cur_offset < head_range.GetEndVirtualOffset()) {
unaligned_range = std::addressof(head_range);
} else if (tail_unaligned && tail_range.virtual_offset <= cur_offset &&
cur_offset < tail_range.GetEndVirtualOffset()) {
unaligned_range = std::addressof(tail_range);
} else {
is_burst_reading = true;
}
}
ASSERT((is_burst_reading ^ (unaligned_range != nullptr)));
// Perform reading by burst, or not.
if (is_burst_reading) {
// Check that the access is valid for burst reading.
ASSERT(size_buffer_required <= cur_size);
// Perform the read.
Result rc = read_impl(cur_dst, size_buffer_required);
if (R_FAILED(rc)) {
R_THROW(rc);
}
// Advance.
cur_dst += size_buffer_required;
cur_offset += size_buffer_required;
cur_size -= size_buffer_required;
// Determine whether we're going to continue burst reading.
const s64 offset_aligned =
tail_unaligned ? tail_range.virtual_offset : end_offset;
ASSERT(cur_offset <= offset_aligned);
if (offset_aligned <= cur_offset) {
is_burst_reading = false;
}
} else {
// We're not burst reading, so we have some unaligned range.
ASSERT(unaligned_range != nullptr);
// Check that the size is correct.
ASSERT(size_buffer_required ==
static_cast<size_t>(unaligned_range->virtual_size));
// Get a pooled buffer for our read.
PooledBuffer pooled_buffer;
pooled_buffer.Allocate(size_buffer_required, size_buffer_required);
// Perform read.
Result rc = read_impl(pooled_buffer.GetBuffer(), size_buffer_required);
if (R_FAILED(rc)) {
R_THROW(rc);
}
// Copy the data we read to the destination.
const size_t skip_size = cur_offset - unaligned_range->virtual_offset;
const size_t copy_size = std::min<size_t>(
cur_size, unaligned_range->GetEndVirtualOffset() - cur_offset);
std::memcpy(cur_dst, pooled_buffer.GetBuffer() + skip_size, copy_size);
// Advance.
cur_dst += copy_size;
cur_offset += copy_size;
cur_size -= copy_size;
}
R_SUCCEED();
}));
R_SUCCEED();
}
};
private:
mutable CompressedStorageCore m_core;
mutable CacheManager m_cache_manager;
public:
CompressedStorage() = default;
virtual ~CompressedStorage() {
this->Finalize();
}
Result Initialize(VirtualFile data_storage, VirtualFile node_storage, VirtualFile entry_storage,
s32 bktr_entry_count, size_t block_size_max,
size_t continuous_reading_size_max, GetDecompressorFunction get_decompressor,
size_t cache_size_0, size_t cache_size_1, s32 max_cache_entries) {
// Initialize our core.
R_TRY(m_core.Initialize(data_storage, node_storage, entry_storage, bktr_entry_count,
block_size_max, continuous_reading_size_max, get_decompressor));
// Get our core size.
s64 core_size = 0;
R_TRY(m_core.GetSize(std::addressof(core_size)));
// Initialize our cache manager.
R_TRY(m_cache_manager.Initialize(core_size, cache_size_0, cache_size_1, max_cache_entries));
R_SUCCEED();
}
void Finalize() {
m_core.Finalize();
}
VirtualFile GetDataStorage() {
return m_core.GetDataStorage();
}
Result GetDataStorageSize(s64* out) {
R_RETURN(m_core.GetDataStorageSize(out));
}
Result GetEntryList(Entry* out_entries, s32* out_read_count, s32 max_entry_count, s64 offset,
s64 size) {
R_RETURN(m_core.GetEntryList(out_entries, out_read_count, max_entry_count, offset, size));
}
BucketTree& GetEntryTable() {
return m_core.GetEntryTable();
}
public:
virtual size_t GetSize() const override {
s64 ret{};
m_core.GetSize(&ret);
return ret;
}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override {
if (R_SUCCEEDED(m_cache_manager.Read(m_core, offset, buffer, size))) {
return size;
} else {
return 0;
}
}
};
} // namespace FileSys

View File

@ -0,0 +1,43 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/result.h"
namespace FileSys {
enum class CompressionType : u8 {
None = 0,
Zeros = 1,
Two = 2,
Lz4 = 3,
Unknown = 4,
};
using DecompressorFunction = Result (*)(void*, size_t, const void*, size_t);
using GetDecompressorFunction = DecompressorFunction (*)(CompressionType);
constexpr s64 CompressionBlockAlignment = 0x10;
namespace CompressionTypeUtility {
constexpr bool IsBlockAlignmentRequired(CompressionType type) {
return type != CompressionType::None && type != CompressionType::Zeros;
}
constexpr bool IsDataStorageAccessRequired(CompressionType type) {
return type != CompressionType::Zeros;
}
constexpr bool IsRandomAccessible(CompressionType type) {
return type == CompressionType::None;
}
constexpr bool IsUnknownType(CompressionType type) {
return type >= CompressionType::Unknown;
}
} // namespace CompressionTypeUtility
} // namespace FileSys

View File

@ -0,0 +1,36 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/lz4_compression.h"
#include "core/file_sys/fssystem/fssystem_compression_configuration.h"
namespace FileSys {
namespace {
Result DecompressLz4(void* dst, size_t dst_size, const void* src, size_t src_size) {
auto result = Common::Compression::DecompressLZ4(dst, dst_size, src, src_size);
R_UNLESS(static_cast<size_t>(result) == dst_size, ResultUnexpectedInCompressedStorageC);
R_SUCCEED();
}
constexpr DecompressorFunction GetNcaDecompressorFunction(CompressionType type) {
switch (type) {
case CompressionType::Lz4:
return DecompressLz4;
default:
return nullptr;
}
}
constexpr NcaCompressionConfiguration g_nca_compression_configuration{
.get_decompressor = GetNcaDecompressorFunction,
};
} // namespace
const NcaCompressionConfiguration* GetNcaCompressionConfiguration() {
return std::addressof(g_nca_compression_configuration);
}
} // namespace FileSys

View File

@ -0,0 +1,12 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/fssystem/fssystem_nca_file_system_driver.h"
namespace FileSys {
const NcaCompressionConfiguration* GetNcaCompressionConfiguration();
}

View File

@ -0,0 +1,57 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/crypto/aes_util.h"
#include "core/crypto/key_manager.h"
#include "core/file_sys/fssystem/fssystem_crypto_configuration.h"
namespace FileSys {
namespace {
void GenerateKey(void* dst_key, size_t dst_key_size, const void* src_key, size_t src_key_size,
s32 key_type) {
if (key_type == static_cast<s32>(KeyType::ZeroKey)) {
std::memset(dst_key, 0, dst_key_size);
return;
}
if (key_type == static_cast<s32>(KeyType::InvalidKey) ||
key_type < static_cast<s32>(KeyType::ZeroKey) ||
key_type >= static_cast<s32>(KeyType::NcaExternalKey)) {
std::memset(dst_key, 0xFF, dst_key_size);
return;
}
const auto& instance = Core::Crypto::KeyManager::Instance();
if (key_type == static_cast<s32>(KeyType::NcaHeaderKey1) ||
key_type == static_cast<s32>(KeyType::NcaHeaderKey2)) {
const s32 key_index = static_cast<s32>(KeyType::NcaHeaderKey2) == key_type;
const auto key = instance.GetKey(Core::Crypto::S256KeyType::Header);
std::memcpy(dst_key, key.data() + key_index * 0x10, std::min(dst_key_size, key.size() / 2));
return;
}
const s32 key_generation =
std::max(key_type / NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount, 1) - 1;
const s32 key_index = key_type % NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount;
Core::Crypto::AESCipher<Core::Crypto::Key128> cipher(
instance.GetKey(Core::Crypto::S128KeyType::KeyArea, key_generation, key_index),
Core::Crypto::Mode::ECB);
cipher.Transcode(reinterpret_cast<const u8*>(src_key), src_key_size,
reinterpret_cast<u8*>(dst_key), Core::Crypto::Op::Decrypt);
}
} // namespace
const NcaCryptoConfiguration& GetCryptoConfiguration() {
static const NcaCryptoConfiguration configuration = {
.generate_key = GenerateKey,
};
return configuration;
}
} // namespace FileSys

View File

@ -0,0 +1,12 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/fssystem/fssystem_nca_file_system_driver.h"
namespace FileSys {
const NcaCryptoConfiguration& GetCryptoConfiguration();
}

View File

@ -0,0 +1,132 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/fssystem/fssystem_hierarchical_integrity_verification_storage.h"
#include "core/file_sys/vfs_offset.h"
namespace FileSys {
HierarchicalIntegrityVerificationStorage::HierarchicalIntegrityVerificationStorage()
: m_data_size(-1) {
for (size_t i = 0; i < MaxLayers - 1; i++) {
m_verify_storages[i] = std::make_shared<IntegrityVerificationStorage>();
}
}
Result HierarchicalIntegrityVerificationStorage::Initialize(
const HierarchicalIntegrityVerificationInformation& info,
HierarchicalStorageInformation storage, int max_data_cache_entries, int max_hash_cache_entries,
s8 buffer_level) {
using AlignedStorage = AlignmentMatchingStoragePooledBuffer<1>;
// Validate preconditions.
ASSERT(IntegrityMinLayerCount <= info.max_layers && info.max_layers <= IntegrityMaxLayerCount);
// Set member variables.
m_max_layers = info.max_layers;
// Initialize the top level verification storage.
m_verify_storages[0]->Initialize(storage[HierarchicalStorageInformation::MasterStorage],
storage[HierarchicalStorageInformation::Layer1Storage],
static_cast<s64>(1) << info.info[0].block_order, HashSize,
false);
// Ensure we don't leak state if further initialization goes wrong.
ON_RESULT_FAILURE {
m_verify_storages[0]->Finalize();
m_data_size = -1;
};
// Initialize the top level buffer storage.
m_buffer_storages[0] = std::make_shared<AlignedStorage>(
m_verify_storages[0], static_cast<s64>(1) << info.info[0].block_order);
R_UNLESS(m_buffer_storages[0] != nullptr, ResultAllocationMemoryFailedAllocateShared);
// Prepare to initialize the level storages.
s32 level = 0;
// Ensure we don't leak state if further initialization goes wrong.
ON_RESULT_FAILURE_2 {
m_verify_storages[level + 1]->Finalize();
for (; level > 0; --level) {
m_buffer_storages[level].reset();
m_verify_storages[level]->Finalize();
}
};
// Initialize the level storages.
for (; level < m_max_layers - 3; ++level) {
// Initialize the verification storage.
auto buffer_storage =
std::make_shared<OffsetVfsFile>(m_buffer_storages[level], info.info[level].size, 0);
m_verify_storages[level + 1]->Initialize(
std::move(buffer_storage), storage[level + 2],
static_cast<s64>(1) << info.info[level + 1].block_order,
static_cast<s64>(1) << info.info[level].block_order, false);
// Initialize the buffer storage.
m_buffer_storages[level + 1] = std::make_shared<AlignedStorage>(
m_verify_storages[level + 1], static_cast<s64>(1) << info.info[level + 1].block_order);
R_UNLESS(m_buffer_storages[level + 1] != nullptr,
ResultAllocationMemoryFailedAllocateShared);
}
// Initialize the final level storage.
{
// Initialize the verification storage.
auto buffer_storage =
std::make_shared<OffsetVfsFile>(m_buffer_storages[level], info.info[level].size, 0);
m_verify_storages[level + 1]->Initialize(
std::move(buffer_storage), storage[level + 2],
static_cast<s64>(1) << info.info[level + 1].block_order,
static_cast<s64>(1) << info.info[level].block_order, true);
// Initialize the buffer storage.
m_buffer_storages[level + 1] = std::make_shared<AlignedStorage>(
m_verify_storages[level + 1], static_cast<s64>(1) << info.info[level + 1].block_order);
R_UNLESS(m_buffer_storages[level + 1] != nullptr,
ResultAllocationMemoryFailedAllocateShared);
}
// Set the data size.
m_data_size = info.info[level + 1].size;
// We succeeded.
R_SUCCEED();
}
void HierarchicalIntegrityVerificationStorage::Finalize() {
if (m_data_size >= 0) {
m_data_size = 0;
for (s32 level = m_max_layers - 2; level >= 0; --level) {
m_buffer_storages[level].reset();
m_verify_storages[level]->Finalize();
}
m_data_size = -1;
}
}
size_t HierarchicalIntegrityVerificationStorage::Read(u8* buffer, size_t size,
size_t offset) const {
// Validate preconditions.
ASSERT(m_data_size >= 0);
// Succeed if zero-size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
// Read the data.
return m_buffer_storages[m_max_layers - 2]->Read(buffer, size, offset);
}
size_t HierarchicalIntegrityVerificationStorage::GetSize() const {
return m_data_size;
}
} // namespace FileSys

View File

@ -0,0 +1,164 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/alignment.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/fssystem/fs_types.h"
#include "core/file_sys/fssystem/fssystem_alignment_matching_storage.h"
#include "core/file_sys/fssystem/fssystem_integrity_verification_storage.h"
#include "core/file_sys/vfs_offset.h"
namespace FileSys {
struct HierarchicalIntegrityVerificationLevelInformation {
Int64 offset;
Int64 size;
s32 block_order;
std::array<u8, 4> reserved;
};
static_assert(std::is_trivial_v<HierarchicalIntegrityVerificationLevelInformation>);
static_assert(sizeof(HierarchicalIntegrityVerificationLevelInformation) == 0x18);
static_assert(alignof(HierarchicalIntegrityVerificationLevelInformation) == 0x4);
struct HierarchicalIntegrityVerificationInformation {
u32 max_layers;
HierarchicalIntegrityVerificationLevelInformation info[IntegrityMaxLayerCount - 1];
HashSalt seed;
s64 GetLayeredHashSize() const {
return this->info[this->max_layers - 2].offset;
}
s64 GetDataOffset() const {
return this->info[this->max_layers - 2].offset;
}
s64 GetDataSize() const {
return this->info[this->max_layers - 2].size;
}
};
static_assert(std::is_trivial_v<HierarchicalIntegrityVerificationInformation>);
struct HierarchicalIntegrityVerificationMetaInformation {
u32 magic;
u32 version;
u32 master_hash_size;
HierarchicalIntegrityVerificationInformation level_hash_info;
};
static_assert(std::is_trivial_v<HierarchicalIntegrityVerificationMetaInformation>);
struct HierarchicalIntegrityVerificationSizeSet {
s64 control_size;
s64 master_hash_size;
s64 layered_hash_sizes[IntegrityMaxLayerCount - 2];
};
static_assert(std::is_trivial_v<HierarchicalIntegrityVerificationSizeSet>);
class HierarchicalIntegrityVerificationStorage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(HierarchicalIntegrityVerificationStorage);
YUZU_NON_MOVEABLE(HierarchicalIntegrityVerificationStorage);
private:
friend struct HierarchicalIntegrityVerificationMetaInformation;
protected:
static constexpr s64 HashSize = 256 / 8;
static constexpr size_t MaxLayers = IntegrityMaxLayerCount;
public:
using GenerateRandomFunction = void (*)(void* dst, size_t size);
class HierarchicalStorageInformation {
public:
enum {
MasterStorage = 0,
Layer1Storage = 1,
Layer2Storage = 2,
Layer3Storage = 3,
Layer4Storage = 4,
Layer5Storage = 5,
DataStorage = 6,
};
private:
VirtualFile m_storages[DataStorage + 1];
public:
void SetMasterHashStorage(VirtualFile s) {
m_storages[MasterStorage] = s;
}
void SetLayer1HashStorage(VirtualFile s) {
m_storages[Layer1Storage] = s;
}
void SetLayer2HashStorage(VirtualFile s) {
m_storages[Layer2Storage] = s;
}
void SetLayer3HashStorage(VirtualFile s) {
m_storages[Layer3Storage] = s;
}
void SetLayer4HashStorage(VirtualFile s) {
m_storages[Layer4Storage] = s;
}
void SetLayer5HashStorage(VirtualFile s) {
m_storages[Layer5Storage] = s;
}
void SetDataStorage(VirtualFile s) {
m_storages[DataStorage] = s;
}
VirtualFile& operator[](s32 index) {
ASSERT(MasterStorage <= index && index <= DataStorage);
return m_storages[index];
}
};
private:
static GenerateRandomFunction s_generate_random;
static void SetGenerateRandomFunction(GenerateRandomFunction func) {
s_generate_random = func;
}
private:
std::shared_ptr<IntegrityVerificationStorage> m_verify_storages[MaxLayers - 1];
std::shared_ptr<AlignmentMatchingStoragePooledBuffer<1>> m_buffer_storages[MaxLayers - 1];
s64 m_data_size;
s32 m_max_layers;
public:
HierarchicalIntegrityVerificationStorage();
virtual ~HierarchicalIntegrityVerificationStorage() override {
this->Finalize();
}
Result Initialize(const HierarchicalIntegrityVerificationInformation& info,
HierarchicalStorageInformation storage, int max_data_cache_entries,
int max_hash_cache_entries, s8 buffer_level);
void Finalize();
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override;
virtual size_t GetSize() const override;
bool IsInitialized() const {
return m_data_size >= 0;
}
s64 GetL1HashVerificationBlockSize() const {
return m_verify_storages[m_max_layers - 2]->GetBlockSize();
}
VirtualFile GetL1HashStorage() {
return std::make_shared<OffsetVfsFile>(
m_buffer_storages[m_max_layers - 3],
Common::DivideUp(m_data_size, this->GetL1HashVerificationBlockSize()), 0);
}
public:
static constexpr s8 GetDefaultDataCacheBufferLevel(u32 max_layers) {
return static_cast<s8>(16 + max_layers - 2);
}
};
} // namespace FileSys

View File

@ -0,0 +1,103 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "common/scope_exit.h"
#include "core/file_sys/fssystem/fssystem_hierarchical_sha256_storage.h"
namespace FileSys {
namespace {
s32 Log2(s32 value) {
ASSERT(value > 0);
ASSERT(Common::IsPowerOfTwo(value));
s32 log = 0;
while ((value >>= 1) > 0) {
++log;
}
return log;
}
} // namespace
Result HierarchicalSha256Storage::Initialize(VirtualFile* base_storages, s32 layer_count,
size_t htbs, void* hash_buf, size_t hash_buf_size) {
// Validate preconditions.
ASSERT(layer_count == LayerCount);
ASSERT(Common::IsPowerOfTwo(htbs));
ASSERT(hash_buf != nullptr);
// Set size tracking members.
m_hash_target_block_size = static_cast<s32>(htbs);
m_log_size_ratio = Log2(m_hash_target_block_size / HashSize);
// Get the base storage size.
m_base_storage_size = base_storages[2]->GetSize();
{
auto size_guard = SCOPE_GUARD({ m_base_storage_size = 0; });
R_UNLESS(m_base_storage_size <= static_cast<s64>(HashSize)
<< m_log_size_ratio << m_log_size_ratio,
ResultHierarchicalSha256BaseStorageTooLarge);
size_guard.Cancel();
}
// Set hash buffer tracking members.
m_base_storage = base_storages[2];
m_hash_buffer = static_cast<char*>(hash_buf);
m_hash_buffer_size = hash_buf_size;
// Read the master hash.
std::array<u8, HashSize> master_hash{};
base_storages[0]->ReadObject(std::addressof(master_hash));
// Read and validate the data being hashed.
s64 hash_storage_size = base_storages[1]->GetSize();
ASSERT(Common::IsAligned(hash_storage_size, HashSize));
ASSERT(hash_storage_size <= m_hash_target_block_size);
ASSERT(hash_storage_size <= static_cast<s64>(m_hash_buffer_size));
base_storages[1]->Read(reinterpret_cast<u8*>(m_hash_buffer),
static_cast<size_t>(hash_storage_size), 0);
R_SUCCEED();
}
size_t HierarchicalSha256Storage::Read(u8* buffer, size_t size, size_t offset) const {
// Succeed if zero-size.
if (size == 0) {
return size;
}
// Validate that we have a buffer to read into.
ASSERT(buffer != nullptr);
// Validate preconditions.
ASSERT(Common::IsAligned(offset, m_hash_target_block_size));
ASSERT(Common::IsAligned(size, m_hash_target_block_size));
// Read the data.
const size_t reduced_size = static_cast<size_t>(
std::min<s64>(m_base_storage_size,
Common::AlignUp(offset + size, m_hash_target_block_size)) -
offset);
m_base_storage->Read(buffer, reduced_size, offset);
// Setup tracking variables.
auto cur_offset = offset;
auto remaining_size = reduced_size;
while (remaining_size > 0) {
const auto cur_size =
static_cast<size_t>(std::min<s64>(m_hash_target_block_size, remaining_size));
ASSERT(static_cast<size_t>(cur_offset >> m_log_size_ratio) < m_hash_buffer_size);
// Advance.
cur_offset += cur_size;
remaining_size -= cur_size;
}
return size;
}
} // namespace FileSys

View File

@ -0,0 +1,44 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/vfs.h"
namespace FileSys {
class HierarchicalSha256Storage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(HierarchicalSha256Storage);
YUZU_NON_MOVEABLE(HierarchicalSha256Storage);
public:
static constexpr s32 LayerCount = 3;
static constexpr size_t HashSize = 256 / 8;
private:
VirtualFile m_base_storage;
s64 m_base_storage_size;
char* m_hash_buffer;
size_t m_hash_buffer_size;
s32 m_hash_target_block_size;
s32 m_log_size_ratio;
std::mutex m_mutex;
public:
HierarchicalSha256Storage() : m_mutex() {}
Result Initialize(VirtualFile* base_storages, s32 layer_count, size_t htbs, void* hash_buf,
size_t hash_buf_size);
virtual size_t GetSize() const override {
return m_base_storage->GetSize();
}
virtual size_t Read(u8* buffer, size_t length, size_t offset) const override;
};
} // namespace FileSys

View File

@ -0,0 +1,120 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fssystem_indirect_storage.h"
namespace FileSys {
Result IndirectStorage::Initialize(VirtualFile table_storage) {
// Read and verify the bucket tree header.
BucketTree::Header header;
table_storage->ReadObject(std::addressof(header));
R_TRY(header.Verify());
// Determine extents.
const auto node_storage_size = QueryNodeStorageSize(header.entry_count);
const auto entry_storage_size = QueryEntryStorageSize(header.entry_count);
const auto node_storage_offset = QueryHeaderStorageSize();
const auto entry_storage_offset = node_storage_offset + node_storage_size;
// Initialize.
R_RETURN(this->Initialize(
std::make_shared<OffsetVfsFile>(table_storage, node_storage_size, node_storage_offset),
std::make_shared<OffsetVfsFile>(table_storage, entry_storage_size, entry_storage_offset),
header.entry_count));
}
void IndirectStorage::Finalize() {
if (this->IsInitialized()) {
m_table.Finalize();
for (auto i = 0; i < StorageCount; i++) {
m_data_storage[i] = VirtualFile();
}
}
}
Result IndirectStorage::GetEntryList(Entry* out_entries, s32* out_entry_count, s32 entry_count,
s64 offset, s64 size) {
// Validate pre-conditions.
ASSERT(offset >= 0);
ASSERT(size >= 0);
ASSERT(this->IsInitialized());
// Clear the out count.
R_UNLESS(out_entry_count != nullptr, ResultNullptrArgument);
*out_entry_count = 0;
// Succeed if there's no range.
R_SUCCEED_IF(size == 0);
// If we have an output array, we need it to be non-null.
R_UNLESS(out_entries != nullptr || entry_count == 0, ResultNullptrArgument);
// Check that our range is valid.
BucketTree::Offsets table_offsets;
R_TRY(m_table.GetOffsets(std::addressof(table_offsets)));
R_UNLESS(table_offsets.IsInclude(offset, size), ResultOutOfRange);
// Find the offset in our tree.
BucketTree::Visitor visitor;
R_TRY(m_table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->GetVirtualOffset();
R_UNLESS(0 <= entry_offset && table_offsets.IsInclude(entry_offset),
ResultInvalidIndirectEntryOffset);
}
// Prepare to loop over entries.
const auto end_offset = offset + static_cast<s64>(size);
s32 count = 0;
auto cur_entry = *visitor.Get<Entry>();
while (cur_entry.GetVirtualOffset() < end_offset) {
// Try to write the entry to the out list
if (entry_count != 0) {
if (count >= entry_count) {
break;
}
std::memcpy(out_entries + count, std::addressof(cur_entry), sizeof(Entry));
}
count++;
// Advance.
if (visitor.CanMoveNext()) {
R_TRY(visitor.MoveNext());
cur_entry = *visitor.Get<Entry>();
} else {
break;
}
}
// Write the output count.
*out_entry_count = count;
R_SUCCEED();
}
size_t IndirectStorage::Read(u8* buffer, size_t size, size_t offset) const {
// Validate pre-conditions.
ASSERT(offset >= 0);
ASSERT(this->IsInitialized());
ASSERT(buffer != nullptr);
// Succeed if there's nothing to read.
if (size == 0) {
return 0;
}
const_cast<IndirectStorage*>(this)->OperatePerEntry<true, true>(
offset, size,
[=](VirtualFile storage, s64 data_offset, s64 cur_offset, s64 cur_size) -> Result {
storage->Read(reinterpret_cast<u8*>(buffer) + (cur_offset - offset),
static_cast<size_t>(cur_size), data_offset);
R_SUCCEED();
});
return size;
}
} // namespace FileSys

View File

@ -0,0 +1,294 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree.h"
#include "core/file_sys/fssystem/fssystem_bucket_tree_template_impl.h"
#include "core/file_sys/vfs.h"
#include "core/file_sys/vfs_offset.h"
namespace FileSys {
class IndirectStorage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(IndirectStorage);
YUZU_NON_MOVEABLE(IndirectStorage);
public:
static constexpr s32 StorageCount = 2;
static constexpr size_t NodeSize = 16_KiB;
struct Entry {
u8 virt_offset[sizeof(s64)];
u8 phys_offset[sizeof(s64)];
s32 storage_index;
void SetVirtualOffset(const s64& ofs) {
std::memcpy(this->virt_offset, std::addressof(ofs), sizeof(s64));
}
s64 GetVirtualOffset() const {
s64 offset;
std::memcpy(std::addressof(offset), this->virt_offset, sizeof(s64));
return offset;
}
void SetPhysicalOffset(const s64& ofs) {
std::memcpy(this->phys_offset, std::addressof(ofs), sizeof(s64));
}
s64 GetPhysicalOffset() const {
s64 offset;
std::memcpy(std::addressof(offset), this->phys_offset, sizeof(s64));
return offset;
}
};
static_assert(std::is_trivial_v<Entry>);
static_assert(sizeof(Entry) == 0x14);
struct EntryData {
s64 virt_offset;
s64 phys_offset;
s32 storage_index;
void Set(const Entry& entry) {
this->virt_offset = entry.GetVirtualOffset();
this->phys_offset = entry.GetPhysicalOffset();
this->storage_index = entry.storage_index;
}
};
static_assert(std::is_trivial_v<EntryData>);
private:
struct ContinuousReadingEntry {
static constexpr size_t FragmentSizeMax = 4_KiB;
IndirectStorage::Entry entry;
s64 GetVirtualOffset() const {
return this->entry.GetVirtualOffset();
}
s64 GetPhysicalOffset() const {
return this->entry.GetPhysicalOffset();
}
bool IsFragment() const {
return this->entry.storage_index != 0;
}
};
static_assert(std::is_trivial_v<ContinuousReadingEntry>);
public:
static constexpr s64 QueryHeaderStorageSize() {
return BucketTree::QueryHeaderStorageSize();
}
static constexpr s64 QueryNodeStorageSize(s32 entry_count) {
return BucketTree::QueryNodeStorageSize(NodeSize, sizeof(Entry), entry_count);
}
static constexpr s64 QueryEntryStorageSize(s32 entry_count) {
return BucketTree::QueryEntryStorageSize(NodeSize, sizeof(Entry), entry_count);
}
private:
mutable BucketTree m_table;
std::array<VirtualFile, StorageCount> m_data_storage;
public:
IndirectStorage() : m_table(), m_data_storage() {}
virtual ~IndirectStorage() {
this->Finalize();
}
Result Initialize(VirtualFile table_storage);
void Finalize();
bool IsInitialized() const {
return m_table.IsInitialized();
}
Result Initialize(VirtualFile node_storage, VirtualFile entry_storage, s32 entry_count) {
R_RETURN(
m_table.Initialize(node_storage, entry_storage, NodeSize, sizeof(Entry), entry_count));
}
void SetStorage(s32 idx, VirtualFile storage) {
ASSERT(0 <= idx && idx < StorageCount);
m_data_storage[idx] = storage;
}
template <typename T>
void SetStorage(s32 idx, T storage, s64 offset, s64 size) {
ASSERT(0 <= idx && idx < StorageCount);
m_data_storage[idx] = std::make_shared<OffsetVfsFile>(storage, size, offset);
}
Result GetEntryList(Entry* out_entries, s32* out_entry_count, s32 entry_count, s64 offset,
s64 size);
virtual size_t GetSize() const override {
BucketTree::Offsets offsets;
m_table.GetOffsets(std::addressof(offsets));
return offsets.end_offset;
}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override;
protected:
BucketTree& GetEntryTable() {
return m_table;
}
VirtualFile& GetDataStorage(s32 index) {
ASSERT(0 <= index && index < StorageCount);
return m_data_storage[index];
}
template <bool ContinuousCheck, bool RangeCheck, typename F>
Result OperatePerEntry(s64 offset, s64 size, F func);
};
template <bool ContinuousCheck, bool RangeCheck, typename F>
Result IndirectStorage::OperatePerEntry(s64 offset, s64 size, F func) {
// Validate preconditions.
ASSERT(offset >= 0);
ASSERT(size >= 0);
ASSERT(this->IsInitialized());
// Succeed if there's nothing to operate on.
R_SUCCEED_IF(size == 0);
// Get the table offsets.
BucketTree::Offsets table_offsets;
R_TRY(m_table.GetOffsets(std::addressof(table_offsets)));
// Validate arguments.
R_UNLESS(table_offsets.IsInclude(offset, size), ResultOutOfRange);
// Find the offset in our tree.
BucketTree::Visitor visitor;
R_TRY(m_table.Find(std::addressof(visitor), offset));
{
const auto entry_offset = visitor.Get<Entry>()->GetVirtualOffset();
R_UNLESS(0 <= entry_offset && table_offsets.IsInclude(entry_offset),
ResultInvalidIndirectEntryOffset);
}
// Prepare to operate in chunks.
auto cur_offset = offset;
const auto end_offset = offset + static_cast<s64>(size);
BucketTree::ContinuousReadingInfo cr_info;
while (cur_offset < end_offset) {
// Get the current entry.
const auto cur_entry = *visitor.Get<Entry>();
// Get and validate the entry's offset.
const auto cur_entry_offset = cur_entry.GetVirtualOffset();
R_UNLESS(cur_entry_offset <= cur_offset, ResultInvalidIndirectEntryOffset);
// Validate the storage index.
R_UNLESS(0 <= cur_entry.storage_index && cur_entry.storage_index < StorageCount,
ResultInvalidIndirectEntryStorageIndex);
// If we need to check the continuous info, do so.
if constexpr (ContinuousCheck) {
// Scan, if we need to.
if (cr_info.CheckNeedScan()) {
R_TRY(visitor.ScanContinuousReading<ContinuousReadingEntry>(
std::addressof(cr_info), cur_offset,
static_cast<size_t>(end_offset - cur_offset)));
}
// Process a base storage entry.
if (cr_info.CanDo()) {
// Ensure that we can process.
R_UNLESS(cur_entry.storage_index == 0, ResultInvalidIndirectEntryStorageIndex);
// Ensure that we remain within range.
const auto data_offset = cur_offset - cur_entry_offset;
const auto cur_entry_phys_offset = cur_entry.GetPhysicalOffset();
const auto cur_size = static_cast<s64>(cr_info.GetReadSize());
// If we should, verify the range.
if constexpr (RangeCheck) {
// Get the current data storage's size.
s64 cur_data_storage_size = m_data_storage[0]->GetSize();
R_UNLESS(0 <= cur_entry_phys_offset &&
cur_entry_phys_offset <= cur_data_storage_size,
ResultInvalidIndirectEntryOffset);
R_UNLESS(cur_entry_phys_offset + data_offset + cur_size <=
cur_data_storage_size,
ResultInvalidIndirectStorageSize);
}
// Operate.
R_TRY(func(m_data_storage[0], cur_entry_phys_offset + data_offset, cur_offset,
cur_size));
// Mark as done.
cr_info.Done();
}
}
// Get and validate the next entry offset.
s64 next_entry_offset;
if (visitor.CanMoveNext()) {
R_TRY(visitor.MoveNext());
next_entry_offset = visitor.Get<Entry>()->GetVirtualOffset();
R_UNLESS(table_offsets.IsInclude(next_entry_offset), ResultInvalidIndirectEntryOffset);
} else {
next_entry_offset = table_offsets.end_offset;
}
R_UNLESS(cur_offset < next_entry_offset, ResultInvalidIndirectEntryOffset);
// Get the offset of the entry in the data we read.
const auto data_offset = cur_offset - cur_entry_offset;
const auto data_size = (next_entry_offset - cur_entry_offset);
ASSERT(data_size > 0);
// Determine how much is left.
const auto remaining_size = end_offset - cur_offset;
const auto cur_size = std::min<s64>(remaining_size, data_size - data_offset);
ASSERT(cur_size <= size);
// Operate, if we need to.
bool needs_operate;
if constexpr (!ContinuousCheck) {
needs_operate = true;
} else {
needs_operate = !cr_info.IsDone() || cur_entry.storage_index != 0;
}
if (needs_operate) {
const auto cur_entry_phys_offset = cur_entry.GetPhysicalOffset();
if constexpr (RangeCheck) {
// Get the current data storage's size.
s64 cur_data_storage_size = m_data_storage[cur_entry.storage_index]->GetSize();
// Ensure that we remain within range.
R_UNLESS(0 <= cur_entry_phys_offset &&
cur_entry_phys_offset <= cur_data_storage_size,
ResultIndirectStorageCorrupted);
R_UNLESS(cur_entry_phys_offset + data_offset + cur_size <= cur_data_storage_size,
ResultIndirectStorageCorrupted);
}
R_TRY(func(m_data_storage[cur_entry.storage_index], cur_entry_phys_offset + data_offset,
cur_offset, cur_size));
}
cur_offset += cur_size;
}
R_SUCCEED();
}
} // namespace FileSys

View File

@ -0,0 +1,30 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/fssystem/fssystem_integrity_romfs_storage.h"
namespace FileSys {
Result IntegrityRomFsStorage::Initialize(
HierarchicalIntegrityVerificationInformation level_hash_info, Hash master_hash,
HierarchicalIntegrityVerificationStorage::HierarchicalStorageInformation storage_info,
int max_data_cache_entries, int max_hash_cache_entries, s8 buffer_level) {
// Set master hash.
m_master_hash = master_hash;
m_master_hash_storage = std::make_shared<ArrayVfsFile<sizeof(Hash)>>(m_master_hash.value);
R_UNLESS(m_master_hash_storage != nullptr,
ResultAllocationMemoryFailedInIntegrityRomFsStorageA);
// Set the master hash storage.
storage_info[0] = m_master_hash_storage;
// Initialize our integrity storage.
R_RETURN(m_integrity_storage.Initialize(level_hash_info, storage_info, max_data_cache_entries,
max_hash_cache_entries, buffer_level));
}
void IntegrityRomFsStorage::Finalize() {
m_integrity_storage.Finalize();
}
} // namespace FileSys

View File

@ -0,0 +1,42 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/fssystem/fssystem_hierarchical_integrity_verification_storage.h"
#include "core/file_sys/fssystem/fssystem_nca_header.h"
#include "core/file_sys/vfs_vector.h"
namespace FileSys {
constexpr inline size_t IntegrityLayerCountRomFs = 7;
constexpr inline size_t IntegrityHashLayerBlockSize = 16_KiB;
class IntegrityRomFsStorage : public IReadOnlyStorage {
private:
HierarchicalIntegrityVerificationStorage m_integrity_storage;
Hash m_master_hash;
std::shared_ptr<ArrayVfsFile<sizeof(Hash)>> m_master_hash_storage;
public:
IntegrityRomFsStorage() {}
virtual ~IntegrityRomFsStorage() override {
this->Finalize();
}
Result Initialize(
HierarchicalIntegrityVerificationInformation level_hash_info, Hash master_hash,
HierarchicalIntegrityVerificationStorage::HierarchicalStorageInformation storage_info,
int max_data_cache_entries, int max_hash_cache_entries, s8 buffer_level);
void Finalize();
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override {
return m_integrity_storage.Read(buffer, size, offset);
}
virtual size_t GetSize() const override {
return m_integrity_storage.GetSize();
}
};
} // namespace FileSys

View File

@ -0,0 +1,95 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "core/file_sys/fssystem/fssystem_integrity_verification_storage.h"
namespace FileSys {
constexpr inline u32 ILog2(u32 val) {
ASSERT(val > 0);
return ((sizeof(u32) * 8) - 1 - std::countl_zero<u32>(val));
}
void IntegrityVerificationStorage::Initialize(VirtualFile hs, VirtualFile ds, s64 verif_block_size,
s64 upper_layer_verif_block_size, bool is_real_data) {
// Validate preconditions.
ASSERT(verif_block_size >= HashSize);
// Set storages.
m_hash_storage = hs;
m_data_storage = ds;
// Set verification block sizes.
m_verification_block_size = verif_block_size;
m_verification_block_order = ILog2(static_cast<u32>(verif_block_size));
ASSERT(m_verification_block_size == 1ll << m_verification_block_order);
// Set upper layer block sizes.
upper_layer_verif_block_size = std::max(upper_layer_verif_block_size, HashSize);
m_upper_layer_verification_block_size = upper_layer_verif_block_size;
m_upper_layer_verification_block_order = ILog2(static_cast<u32>(upper_layer_verif_block_size));
ASSERT(m_upper_layer_verification_block_size == 1ll << m_upper_layer_verification_block_order);
// Validate sizes.
{
s64 hash_size = m_hash_storage->GetSize();
s64 data_size = m_data_storage->GetSize();
ASSERT(((hash_size / HashSize) * m_verification_block_size) >= data_size);
}
// Set data.
m_is_real_data = is_real_data;
}
void IntegrityVerificationStorage::Finalize() {
m_hash_storage = VirtualFile();
m_data_storage = VirtualFile();
}
size_t IntegrityVerificationStorage::Read(u8* buffer, size_t size, size_t offset) const {
// Validate preconditions.
ASSERT(Common::IsAligned(offset, static_cast<size_t>(m_verification_block_size)));
ASSERT(Common::IsAligned(size, static_cast<size_t>(m_verification_block_size)));
// Succeed if zero size.
if (size == 0) {
return size;
}
// Validate arguments.
ASSERT(buffer != nullptr);
// Validate the offset.
s64 data_size = m_data_storage->GetSize();
ASSERT(offset <= static_cast<size_t>(data_size));
// Validate the access range.
ASSERT(R_SUCCEEDED(IStorage::CheckAccessRange(
offset, size, Common::AlignUp(data_size, static_cast<size_t>(m_verification_block_size)))));
// Determine the read extents.
size_t read_size = size;
if (static_cast<s64>(offset + read_size) > data_size) {
// Determine the padding sizes.
s64 padding_offset = data_size - offset;
size_t padding_size = static_cast<size_t>(
m_verification_block_size - (padding_offset & (m_verification_block_size - 1)));
ASSERT(static_cast<s64>(padding_size) < m_verification_block_size);
// Clear the padding.
std::memset(static_cast<u8*>(buffer) + padding_offset, 0, padding_size);
// Set the new in-bounds size.
read_size = static_cast<size_t>(data_size - offset);
}
// Perform the read.
return m_data_storage->Read(buffer, read_size, offset);
}
size_t IntegrityVerificationStorage::GetSize() const {
return m_data_storage->GetSize();
}
} // namespace FileSys

View File

@ -0,0 +1,65 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <optional>
#include "core/file_sys/fssystem/fs_i_storage.h"
#include "core/file_sys/fssystem/fs_types.h"
namespace FileSys {
class IntegrityVerificationStorage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(IntegrityVerificationStorage);
YUZU_NON_MOVEABLE(IntegrityVerificationStorage);
public:
static constexpr s64 HashSize = 256 / 8;
struct BlockHash {
u8 hash[HashSize];
};
static_assert(std::is_trivial_v<BlockHash>);
private:
VirtualFile m_hash_storage;
VirtualFile m_data_storage;
s64 m_verification_block_size;
s64 m_verification_block_order;
s64 m_upper_layer_verification_block_size;
s64 m_upper_layer_verification_block_order;
bool m_is_real_data;
public:
IntegrityVerificationStorage()
: m_verification_block_size(0), m_verification_block_order(0),
m_upper_layer_verification_block_size(0), m_upper_layer_verification_block_order(0) {}
virtual ~IntegrityVerificationStorage() override {
this->Finalize();
}
void Initialize(VirtualFile hs, VirtualFile ds, s64 verif_block_size,
s64 upper_layer_verif_block_size, bool is_real_data);
void Finalize();
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override;
virtual size_t GetSize() const override;
s64 GetBlockSize() const {
return m_verification_block_size;
}
private:
static void SetValidationBit(BlockHash* hash) {
ASSERT(hash != nullptr);
hash->hash[HashSize - 1] |= 0x80;
}
static bool IsValidationBit(const BlockHash* hash) {
ASSERT(hash != nullptr);
return (hash->hash[HashSize - 1] & 0x80) != 0;
}
};
} // namespace FileSys

View File

@ -0,0 +1,58 @@
#pragma once
#include "core/file_sys/fssystem/fs_i_storage.h"
namespace FileSys {
class MemoryResourceBufferHoldStorage : public IStorage {
YUZU_NON_COPYABLE(MemoryResourceBufferHoldStorage);
YUZU_NON_MOVEABLE(MemoryResourceBufferHoldStorage);
private:
VirtualFile m_storage;
void* m_buffer;
size_t m_buffer_size;
public:
MemoryResourceBufferHoldStorage(VirtualFile storage, size_t buffer_size)
: m_storage(std::move(storage)), m_buffer(::operator new(buffer_size)),
m_buffer_size(buffer_size) {}
virtual ~MemoryResourceBufferHoldStorage() {
// If we have a buffer, deallocate it.
if (m_buffer != nullptr) {
::operator delete(m_buffer);
}
}
bool IsValid() const {
return m_buffer != nullptr;
}
void* GetBuffer() const {
return m_buffer;
}
public:
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override {
// Check pre-conditions.
ASSERT(m_storage != nullptr);
return m_storage->Read(buffer, size, offset);
}
virtual size_t GetSize() const override {
// Check pre-conditions.
ASSERT(m_storage != nullptr);
return m_storage->GetSize();
}
virtual size_t Write(const u8* buffer, size_t size, size_t offset) override {
// Check pre-conditions.
ASSERT(m_storage != nullptr);
return m_storage->Write(buffer, size, offset);
}
};
} // namespace FileSys

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,360 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/fssystem/fssystem_compression_common.h"
#include "core/file_sys/fssystem/fssystem_nca_header.h"
#include "core/file_sys/vfs.h"
namespace FileSys {
class CompressedStorage;
class AesCtrCounterExtendedStorage;
class IndirectStorage;
class SparseStorage;
struct NcaCryptoConfiguration;
using KeyGenerationFunction = void (*)(void* dst_key, size_t dst_key_size, const void* src_key,
size_t src_key_size, s32 key_type);
using VerifySign1Function = bool (*)(const void* sig, size_t sig_size, const void* data,
size_t data_size, u8 generation);
struct NcaCryptoConfiguration {
static constexpr size_t Rsa2048KeyModulusSize = 2048 / 8;
static constexpr size_t Rsa2048KeyPublicExponentSize = 3;
static constexpr size_t Rsa2048KeyPrivateExponentSize = Rsa2048KeyModulusSize;
static constexpr size_t Aes128KeySize = 128 / 8;
static constexpr size_t Header1SignatureKeyGenerationMax = 1;
static constexpr s32 KeyAreaEncryptionKeyIndexCount = 3;
static constexpr s32 HeaderEncryptionKeyCount = 2;
static constexpr u8 KeyAreaEncryptionKeyIndexZeroKey = 0xFF;
static constexpr size_t KeyGenerationMax = 32;
const u8* header_1_sign_key_moduli[Header1SignatureKeyGenerationMax + 1];
u8 header_1_sign_key_public_exponent[Rsa2048KeyPublicExponentSize];
u8 key_area_encryption_key_source[KeyAreaEncryptionKeyIndexCount][Aes128KeySize];
u8 header_encryption_key_source[Aes128KeySize];
u8 header_encrypted_encryption_keys[HeaderEncryptionKeyCount][Aes128KeySize];
KeyGenerationFunction generate_key;
VerifySign1Function verify_sign1;
bool is_plaintext_header_available;
bool is_available_sw_key;
};
static_assert(std::is_trivial_v<NcaCryptoConfiguration>);
struct NcaCompressionConfiguration {
GetDecompressorFunction get_decompressor;
};
static_assert(std::is_trivial_v<NcaCompressionConfiguration>);
constexpr inline s32 KeyAreaEncryptionKeyCount =
NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount *
NcaCryptoConfiguration::KeyGenerationMax;
enum class KeyType : s32 {
ZeroKey = -2,
InvalidKey = -1,
NcaHeaderKey1 = KeyAreaEncryptionKeyCount + 0,
NcaHeaderKey2 = KeyAreaEncryptionKeyCount + 1,
NcaExternalKey = KeyAreaEncryptionKeyCount + 2,
SaveDataDeviceUniqueMac = KeyAreaEncryptionKeyCount + 3,
SaveDataSeedUniqueMac = KeyAreaEncryptionKeyCount + 4,
SaveDataTransferMac = KeyAreaEncryptionKeyCount + 5,
};
constexpr inline bool IsInvalidKeyTypeValue(s32 key_type) {
return key_type < 0;
}
constexpr inline s32 GetKeyTypeValue(u8 key_index, u8 key_generation) {
if (key_index == NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexZeroKey) {
return static_cast<s32>(KeyType::ZeroKey);
}
if (key_index >= NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount) {
return static_cast<s32>(KeyType::InvalidKey);
}
return NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount * key_generation + key_index;
}
class NcaReader {
YUZU_NON_COPYABLE(NcaReader);
YUZU_NON_MOVEABLE(NcaReader);
private:
NcaHeader m_header;
u8 m_decryption_keys[NcaHeader::DecryptionKey_Count][NcaCryptoConfiguration::Aes128KeySize];
VirtualFile m_body_storage;
VirtualFile m_header_storage;
u8 m_external_decryption_key[NcaCryptoConfiguration::Aes128KeySize];
bool m_is_software_aes_prioritized;
bool m_is_available_sw_key;
NcaHeader::EncryptionType m_header_encryption_type;
bool m_is_header_sign1_signature_valid;
GetDecompressorFunction m_get_decompressor;
public:
NcaReader();
~NcaReader();
Result Initialize(VirtualFile base_storage, const NcaCryptoConfiguration& crypto_cfg,
const NcaCompressionConfiguration& compression_cfg);
VirtualFile GetSharedBodyStorage();
u32 GetMagic() const;
NcaHeader::DistributionType GetDistributionType() const;
NcaHeader::ContentType GetContentType() const;
u8 GetHeaderSign1KeyGeneration() const;
u8 GetKeyGeneration() const;
u8 GetKeyIndex() const;
u64 GetContentSize() const;
u64 GetProgramId() const;
u32 GetContentIndex() const;
u32 GetSdkAddonVersion() const;
void GetRightsId(u8* dst, size_t dst_size) const;
bool HasFsInfo(s32 index) const;
s32 GetFsCount() const;
const Hash& GetFsHeaderHash(s32 index) const;
void GetFsHeaderHash(Hash* dst, s32 index) const;
void GetFsInfo(NcaHeader::FsInfo* dst, s32 index) const;
u64 GetFsOffset(s32 index) const;
u64 GetFsEndOffset(s32 index) const;
u64 GetFsSize(s32 index) const;
void GetEncryptedKey(void* dst, size_t size) const;
const void* GetDecryptionKey(s32 index) const;
bool HasValidInternalKey() const;
bool HasInternalDecryptionKeyForAesHw() const;
bool IsSoftwareAesPrioritized() const;
void PrioritizeSoftwareAes();
bool IsAvailableSwKey() const;
bool HasExternalDecryptionKey() const;
const void* GetExternalDecryptionKey() const;
void SetExternalDecryptionKey(const void* src, size_t size);
void GetRawData(void* dst, size_t dst_size) const;
NcaHeader::EncryptionType GetEncryptionType() const;
Result ReadHeader(NcaFsHeader* dst, s32 index) const;
GetDecompressorFunction GetDecompressor() const;
bool GetHeaderSign1Valid() const;
void GetHeaderSign2(void* dst, size_t size) const;
};
class NcaFsHeaderReader {
YUZU_NON_COPYABLE(NcaFsHeaderReader);
YUZU_NON_MOVEABLE(NcaFsHeaderReader);
private:
NcaFsHeader m_data;
s32 m_fs_index;
public:
NcaFsHeaderReader() : m_fs_index(-1) {
std::memset(std::addressof(m_data), 0, sizeof(m_data));
}
Result Initialize(const NcaReader& reader, s32 index);
bool IsInitialized() const {
return m_fs_index >= 0;
}
void GetRawData(void* dst, size_t dst_size) const;
NcaFsHeader::HashData& GetHashData();
const NcaFsHeader::HashData& GetHashData() const;
u16 GetVersion() const;
s32 GetFsIndex() const;
NcaFsHeader::FsType GetFsType() const;
NcaFsHeader::HashType GetHashType() const;
NcaFsHeader::EncryptionType GetEncryptionType() const;
NcaPatchInfo& GetPatchInfo();
const NcaPatchInfo& GetPatchInfo() const;
const NcaAesCtrUpperIv GetAesCtrUpperIv() const;
bool IsSkipLayerHashEncryption() const;
Result GetHashTargetOffset(s64* out) const;
bool ExistsSparseLayer() const;
NcaSparseInfo& GetSparseInfo();
const NcaSparseInfo& GetSparseInfo() const;
bool ExistsCompressionLayer() const;
NcaCompressionInfo& GetCompressionInfo();
const NcaCompressionInfo& GetCompressionInfo() const;
bool ExistsPatchMetaHashLayer() const;
NcaMetaDataHashDataInfo& GetPatchMetaDataHashDataInfo();
const NcaMetaDataHashDataInfo& GetPatchMetaDataHashDataInfo() const;
NcaFsHeader::MetaDataHashType GetPatchMetaHashType() const;
bool ExistsSparseMetaHashLayer() const;
NcaMetaDataHashDataInfo& GetSparseMetaDataHashDataInfo();
const NcaMetaDataHashDataInfo& GetSparseMetaDataHashDataInfo() const;
NcaFsHeader::MetaDataHashType GetSparseMetaHashType() const;
};
class NcaFileSystemDriver {
YUZU_NON_COPYABLE(NcaFileSystemDriver);
YUZU_NON_MOVEABLE(NcaFileSystemDriver);
public:
struct StorageContext {
bool open_raw_storage;
VirtualFile body_substorage;
std::shared_ptr<SparseStorage> current_sparse_storage;
VirtualFile sparse_storage_meta_storage;
std::shared_ptr<SparseStorage> original_sparse_storage;
void* external_current_sparse_storage;
void* external_original_sparse_storage;
VirtualFile aes_ctr_ex_storage_meta_storage;
VirtualFile aes_ctr_ex_storage_data_storage;
std::shared_ptr<AesCtrCounterExtendedStorage> aes_ctr_ex_storage;
VirtualFile indirect_storage_meta_storage;
std::shared_ptr<IndirectStorage> indirect_storage;
VirtualFile fs_data_storage;
VirtualFile compressed_storage_meta_storage;
std::shared_ptr<CompressedStorage> compressed_storage;
VirtualFile patch_layer_info_storage;
VirtualFile sparse_layer_info_storage;
VirtualFile external_original_storage;
};
private:
enum class AlignmentStorageRequirement {
CacheBlockSize = 0,
None = 1,
};
private:
std::shared_ptr<NcaReader> m_original_reader;
std::shared_ptr<NcaReader> m_reader;
public:
static Result SetupFsHeaderReader(NcaFsHeaderReader* out, const NcaReader& reader,
s32 fs_index);
public:
NcaFileSystemDriver(std::shared_ptr<NcaReader> reader) : m_original_reader(), m_reader(reader) {
ASSERT(m_reader != nullptr);
}
NcaFileSystemDriver(std::shared_ptr<NcaReader> original_reader,
std::shared_ptr<NcaReader> reader)
: m_original_reader(original_reader), m_reader(reader) {
ASSERT(m_reader != nullptr);
}
Result OpenStorageWithContext(VirtualFile* out, NcaFsHeaderReader* out_header_reader,
s32 fs_index, StorageContext* ctx);
Result OpenStorage(VirtualFile* out, NcaFsHeaderReader* out_header_reader, s32 fs_index) {
// Create a storage context.
StorageContext ctx{};
// Open the storage.
R_RETURN(OpenStorageWithContext(out, out_header_reader, fs_index, std::addressof(ctx)));
}
public:
Result CreateStorageByRawStorage(VirtualFile* out, const NcaFsHeaderReader* header_reader,
VirtualFile raw_storage, StorageContext* ctx);
private:
Result OpenStorageImpl(VirtualFile* out, NcaFsHeaderReader* out_header_reader, s32 fs_index,
StorageContext* ctx);
Result OpenIndirectableStorageAsOriginal(VirtualFile* out,
const NcaFsHeaderReader* header_reader,
StorageContext* ctx);
Result CreateBodySubStorage(VirtualFile* out, s64 offset, s64 size);
Result CreateAesCtrStorage(VirtualFile* out, VirtualFile base_storage, s64 offset,
const NcaAesCtrUpperIv& upper_iv,
AlignmentStorageRequirement alignment_storage_requirement);
Result CreateAesXtsStorage(VirtualFile* out, VirtualFile base_storage, s64 offset);
Result CreateSparseStorageMetaStorage(VirtualFile* out, VirtualFile base_storage, s64 offset,
const NcaAesCtrUpperIv& upper_iv,
const NcaSparseInfo& sparse_info);
Result CreateSparseStorageCore(std::shared_ptr<SparseStorage>* out, VirtualFile base_storage,
s64 base_size, VirtualFile meta_storage,
const NcaSparseInfo& sparse_info, bool external_info);
Result CreateSparseStorage(VirtualFile* out, s64* out_fs_data_offset,
std::shared_ptr<SparseStorage>* out_sparse_storage,
VirtualFile* out_meta_storage, s32 index,
const NcaAesCtrUpperIv& upper_iv, const NcaSparseInfo& sparse_info);
Result CreateSparseStorageMetaStorageWithVerification(
VirtualFile* out, VirtualFile* out_verification, VirtualFile base_storage, s64 offset,
const NcaAesCtrUpperIv& upper_iv, const NcaSparseInfo& sparse_info,
const NcaMetaDataHashDataInfo& meta_data_hash_data_info);
Result CreateSparseStorageWithVerification(
VirtualFile* out, s64* out_fs_data_offset,
std::shared_ptr<SparseStorage>* out_sparse_storage, VirtualFile* out_meta_storage,
VirtualFile* out_verification, s32 index, const NcaAesCtrUpperIv& upper_iv,
const NcaSparseInfo& sparse_info, const NcaMetaDataHashDataInfo& meta_data_hash_data_info,
NcaFsHeader::MetaDataHashType meta_data_hash_type);
Result CreateAesCtrExStorageMetaStorage(VirtualFile* out, VirtualFile base_storage, s64 offset,
NcaFsHeader::EncryptionType encryption_type,
const NcaAesCtrUpperIv& upper_iv,
const NcaPatchInfo& patch_info);
Result CreateAesCtrExStorage(VirtualFile* out,
std::shared_ptr<AesCtrCounterExtendedStorage>* out_ext,
VirtualFile base_storage, VirtualFile meta_storage,
s64 counter_offset, const NcaAesCtrUpperIv& upper_iv,
const NcaPatchInfo& patch_info);
Result CreateIndirectStorageMetaStorage(VirtualFile* out, VirtualFile base_storage,
const NcaPatchInfo& patch_info);
Result CreateIndirectStorage(VirtualFile* out, std::shared_ptr<IndirectStorage>* out_ind,
VirtualFile base_storage, VirtualFile original_data_storage,
VirtualFile meta_storage, const NcaPatchInfo& patch_info);
Result CreatePatchMetaStorage(VirtualFile* out_aes_ctr_ex_meta, VirtualFile* out_indirect_meta,
VirtualFile* out_verification, VirtualFile base_storage,
s64 offset, const NcaAesCtrUpperIv& upper_iv,
const NcaPatchInfo& patch_info,
const NcaMetaDataHashDataInfo& meta_data_hash_data_info);
Result CreateSha256Storage(VirtualFile* out, VirtualFile base_storage,
const NcaFsHeader::HashData::HierarchicalSha256Data& sha256_data);
Result CreateIntegrityVerificationStorage(
VirtualFile* out, VirtualFile base_storage,
const NcaFsHeader::HashData::IntegrityMetaInfo& meta_info);
Result CreateIntegrityVerificationStorageForMeta(
VirtualFile* out, VirtualFile* out_verification, VirtualFile base_storage, s64 offset,
const NcaMetaDataHashDataInfo& meta_data_hash_data_info);
Result CreateIntegrityVerificationStorageImpl(
VirtualFile* out, VirtualFile base_storage,
const NcaFsHeader::HashData::IntegrityMetaInfo& meta_info, s64 layer_info_offset,
int max_data_cache_entries, int max_hash_cache_entries, s8 buffer_level);
Result CreateRegionSwitchStorage(VirtualFile* out, const NcaFsHeaderReader* header_reader,
VirtualFile inside_storage, VirtualFile outside_storage);
Result CreateCompressedStorage(VirtualFile* out, std::shared_ptr<CompressedStorage>* out_cmp,
VirtualFile* out_meta, VirtualFile base_storage,
const NcaCompressionInfo& compression_info);
public:
Result CreateCompressedStorage(VirtualFile* out, std::shared_ptr<CompressedStorage>* out_cmp,
VirtualFile* out_meta, VirtualFile base_storage,
const NcaCompressionInfo& compression_info,
GetDecompressorFunction get_decompressor);
};
} // namespace FileSys

View File

@ -0,0 +1,20 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/fssystem/fssystem_nca_header.h"
namespace FileSys {
u8 NcaHeader::GetProperKeyGeneration() const {
return std::max(this->key_generation, this->key_generation_2);
}
bool NcaPatchInfo::HasIndirectTable() const {
return this->indirect_size != 0;
}
bool NcaPatchInfo::HasAesCtrExTable() const {
return this->aes_ctr_ex_size != 0;
}
} // namespace FileSys

View File

@ -0,0 +1,338 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/literals.h"
#include "core/file_sys/errors.h"
#include "core/file_sys/fssystem/fs_types.h"
namespace FileSys {
using namespace Common::Literals;
struct Hash {
static constexpr std::size_t Size = 256 / 8;
std::array<u8, Size> value;
};
static_assert(sizeof(Hash) == Hash::Size);
static_assert(std::is_trivial_v<Hash>);
using NcaDigest = Hash;
struct NcaHeader {
enum class ContentType : u8 {
Program = 0,
Meta = 1,
Control = 2,
Manual = 3,
Data = 4,
PublicData = 5,
Start = Program,
End = PublicData,
};
enum class DistributionType : u8 {
Download = 0,
GameCard = 1,
Start = Download,
End = GameCard,
};
enum class EncryptionType : u8 {
Auto = 0,
None = 1,
};
enum DecryptionKey {
DecryptionKey_AesXts = 0,
DecryptionKey_AesXts1 = DecryptionKey_AesXts,
DecryptionKey_AesXts2 = 1,
DecryptionKey_AesCtr = 2,
DecryptionKey_AesCtrEx = 3,
DecryptionKey_AesCtrHw = 4,
DecryptionKey_Count,
};
struct FsInfo {
u32 start_sector;
u32 end_sector;
u32 hash_sectors;
u32 reserved;
};
static_assert(sizeof(FsInfo) == 0x10);
static_assert(std::is_trivial_v<FsInfo>);
static constexpr u32 Magic0 = Common::MakeMagic('N', 'C', 'A', '0');
static constexpr u32 Magic1 = Common::MakeMagic('N', 'C', 'A', '1');
static constexpr u32 Magic2 = Common::MakeMagic('N', 'C', 'A', '2');
static constexpr u32 Magic3 = Common::MakeMagic('N', 'C', 'A', '3');
static constexpr u32 Magic = Magic3;
static constexpr std::size_t Size = 1_KiB;
static constexpr s32 FsCountMax = 4;
static constexpr std::size_t HeaderSignCount = 2;
static constexpr std::size_t HeaderSignSize = 0x100;
static constexpr std::size_t EncryptedKeyAreaSize = 0x100;
static constexpr std::size_t SectorSize = 0x200;
static constexpr std::size_t SectorShift = 9;
static constexpr std::size_t RightsIdSize = 0x10;
static constexpr std::size_t XtsBlockSize = 0x200;
static constexpr std::size_t CtrBlockSize = 0x10;
static_assert(SectorSize == (1 << SectorShift));
// Data members.
std::array<u8, HeaderSignSize> header_sign_1;
std::array<u8, HeaderSignSize> header_sign_2;
u32 magic;
DistributionType distribution_type;
ContentType content_type;
u8 key_generation;
u8 key_index;
u64 content_size;
u64 program_id;
u32 content_index;
u32 sdk_addon_version;
u8 key_generation_2;
u8 header1_signature_key_generation;
std::array<u8, 2> reserved_222;
std::array<u32, 3> reserved_224;
std::array<u8, RightsIdSize> rights_id;
std::array<FsInfo, FsCountMax> fs_info;
std::array<Hash, FsCountMax> fs_header_hash;
std::array<u8, EncryptedKeyAreaSize> encrypted_key_area;
static constexpr u64 SectorToByte(u32 sector) {
return static_cast<u64>(sector) << SectorShift;
}
static constexpr u32 ByteToSector(u64 byte) {
return static_cast<u32>(byte >> SectorShift);
}
u8 GetProperKeyGeneration() const;
};
static_assert(sizeof(NcaHeader) == NcaHeader::Size);
static_assert(std::is_trivial_v<NcaHeader>);
struct NcaBucketInfo {
static constexpr size_t HeaderSize = 0x10;
Int64 offset;
Int64 size;
std::array<u8, HeaderSize> header;
};
static_assert(std::is_trivial_v<NcaBucketInfo>);
struct NcaPatchInfo {
static constexpr size_t Size = 0x40;
static constexpr size_t Offset = 0x100;
Int64 indirect_offset;
Int64 indirect_size;
std::array<u8, NcaBucketInfo::HeaderSize> indirect_header;
Int64 aes_ctr_ex_offset;
Int64 aes_ctr_ex_size;
std::array<u8, NcaBucketInfo::HeaderSize> aes_ctr_ex_header;
bool HasIndirectTable() const;
bool HasAesCtrExTable() const;
};
static_assert(std::is_trivial_v<NcaPatchInfo>);
union NcaAesCtrUpperIv {
u64 value;
struct {
u32 generation;
u32 secure_value;
} part;
};
static_assert(std::is_trivial_v<NcaAesCtrUpperIv>);
struct NcaSparseInfo {
NcaBucketInfo bucket;
Int64 physical_offset;
u16 generation;
std::array<u8, 6> reserved;
s64 GetPhysicalSize() const {
return this->bucket.offset + this->bucket.size;
}
u32 GetGeneration() const {
return static_cast<u32>(this->generation) << 16;
}
const NcaAesCtrUpperIv MakeAesCtrUpperIv(NcaAesCtrUpperIv upper_iv) const {
NcaAesCtrUpperIv sparse_upper_iv = upper_iv;
sparse_upper_iv.part.generation = this->GetGeneration();
return sparse_upper_iv;
}
};
static_assert(std::is_trivial_v<NcaSparseInfo>);
struct NcaCompressionInfo {
NcaBucketInfo bucket;
std::array<u8, 8> resreved;
};
static_assert(std::is_trivial_v<NcaCompressionInfo>);
struct NcaMetaDataHashDataInfo {
Int64 offset;
Int64 size;
Hash hash;
};
static_assert(std::is_trivial_v<NcaMetaDataHashDataInfo>);
struct NcaFsHeader {
static constexpr size_t Size = 0x200;
static constexpr size_t HashDataOffset = 0x8;
struct Region {
Int64 offset;
Int64 size;
};
static_assert(std::is_trivial_v<Region>);
enum class FsType : u8 {
RomFs = 0,
PartitionFs = 1,
};
enum class EncryptionType : u8 {
Auto = 0,
None = 1,
AesXts = 2,
AesCtr = 3,
AesCtrEx = 4,
AesCtrSkipLayerHash = 5,
AesCtrExSkipLayerHash = 6,
};
enum class HashType : u8 {
Auto = 0,
None = 1,
HierarchicalSha256Hash = 2,
HierarchicalIntegrityHash = 3,
AutoSha3 = 4,
HierarchicalSha3256Hash = 5,
HierarchicalIntegritySha3Hash = 6,
};
enum class MetaDataHashType : u8 {
None = 0,
HierarchicalIntegrity = 1,
};
union HashData {
struct HierarchicalSha256Data {
static constexpr size_t HashLayerCountMax = 5;
static const size_t MasterHashOffset;
Hash fs_data_master_hash;
s32 hash_block_size;
s32 hash_layer_count;
std::array<Region, HashLayerCountMax> hash_layer_region;
} hierarchical_sha256_data;
static_assert(std::is_trivial_v<HierarchicalSha256Data>);
struct IntegrityMetaInfo {
static const size_t MasterHashOffset;
u32 magic;
u32 version;
u32 master_hash_size;
struct LevelHashInfo {
u32 max_layers;
struct HierarchicalIntegrityVerificationLevelInformation {
static constexpr size_t IntegrityMaxLayerCount = 7;
Int64 offset;
Int64 size;
s32 block_order;
std::array<u8, 4> reserved;
};
std::array<
HierarchicalIntegrityVerificationLevelInformation,
HierarchicalIntegrityVerificationLevelInformation::IntegrityMaxLayerCount - 1>
info;
struct SignatureSalt {
static constexpr size_t Size = 0x20;
std::array<u8, Size> value;
};
SignatureSalt seed;
} level_hash_info;
Hash master_hash;
} integrity_meta_info;
static_assert(std::is_trivial_v<IntegrityMetaInfo>);
std::array<u8, NcaPatchInfo::Offset - HashDataOffset> padding;
};
u16 version;
FsType fs_type;
HashType hash_type;
EncryptionType encryption_type;
MetaDataHashType meta_data_hash_type;
std::array<u8, 2> reserved;
HashData hash_data;
NcaPatchInfo patch_info;
NcaAesCtrUpperIv aes_ctr_upper_iv;
NcaSparseInfo sparse_info;
NcaCompressionInfo compression_info;
NcaMetaDataHashDataInfo meta_data_hash_data_info;
std::array<u8, 0x30> pad;
bool IsSkipLayerHashEncryption() const {
return this->encryption_type == EncryptionType::AesCtrSkipLayerHash ||
this->encryption_type == EncryptionType::AesCtrExSkipLayerHash;
}
Result GetHashTargetOffset(s64* out) const {
switch (this->hash_type) {
case HashType::HierarchicalIntegrityHash:
case HashType::HierarchicalIntegritySha3Hash:
*out = this->hash_data.integrity_meta_info.level_hash_info
.info[this->hash_data.integrity_meta_info.level_hash_info.max_layers - 2]
.offset;
R_SUCCEED();
case HashType::HierarchicalSha256Hash:
case HashType::HierarchicalSha3256Hash:
*out =
this->hash_data.hierarchical_sha256_data
.hash_layer_region[this->hash_data.hierarchical_sha256_data.hash_layer_count -
1]
.offset;
R_SUCCEED();
default:
R_THROW(ResultInvalidNcaFsHeader);
}
}
};
static_assert(sizeof(NcaFsHeader) == NcaFsHeader::Size);
static_assert(std::is_trivial_v<NcaFsHeader>);
static_assert(offsetof(NcaFsHeader, patch_info) == NcaPatchInfo::Offset);
inline constexpr const size_t NcaFsHeader::HashData::HierarchicalSha256Data::MasterHashOffset =
offsetof(NcaFsHeader, hash_data.hierarchical_sha256_data.fs_data_master_hash);
inline constexpr const size_t NcaFsHeader::HashData::IntegrityMetaInfo::MasterHashOffset =
offsetof(NcaFsHeader, hash_data.integrity_meta_info.master_hash);
struct NcaMetaDataHashData {
s64 layer_info_offset;
NcaFsHeader::HashData::IntegrityMetaInfo integrity_meta_info;
};
static_assert(sizeof(NcaMetaDataHashData) ==
sizeof(NcaFsHeader::HashData::IntegrityMetaInfo) + sizeof(s64));
static_assert(std::is_trivial_v<NcaMetaDataHashData>);
} // namespace FileSys

View File

@ -0,0 +1,542 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/fssystem/fssystem_aes_xts_storage.h"
#include "core/file_sys/fssystem/fssystem_nca_file_system_driver.h"
#include "core/file_sys/vfs_offset.h"
namespace FileSys {
namespace {
constexpr inline u32 SdkAddonVersionMin = 0x000B0000;
constexpr inline size_t Aes128KeySize = 0x10;
constexpr const std::array<u8, Aes128KeySize> ZeroKey{};
constexpr Result CheckNcaMagic(u32 magic) {
// Verify the magic is not a deprecated one.
R_UNLESS(magic != NcaHeader::Magic0, ResultUnsupportedSdkVersion);
R_UNLESS(magic != NcaHeader::Magic1, ResultUnsupportedSdkVersion);
R_UNLESS(magic != NcaHeader::Magic2, ResultUnsupportedSdkVersion);
// Verify the magic is the current one.
R_UNLESS(magic == NcaHeader::Magic3, ResultInvalidNcaSignature);
R_SUCCEED();
}
} // namespace
NcaReader::NcaReader()
: m_body_storage(), m_header_storage(), m_is_software_aes_prioritized(false),
m_is_available_sw_key(false), m_header_encryption_type(NcaHeader::EncryptionType::Auto),
m_get_decompressor() {
std::memset(std::addressof(m_header), 0, sizeof(m_header));
std::memset(std::addressof(m_decryption_keys), 0, sizeof(m_decryption_keys));
std::memset(std::addressof(m_external_decryption_key), 0, sizeof(m_external_decryption_key));
}
NcaReader::~NcaReader() {}
Result NcaReader::Initialize(VirtualFile base_storage, const NcaCryptoConfiguration& crypto_cfg,
const NcaCompressionConfiguration& compression_cfg) {
// Validate preconditions.
ASSERT(base_storage != nullptr);
ASSERT(m_body_storage == nullptr);
// Create the work header storage storage.
VirtualFile work_header_storage;
// We need to be able to generate keys.
R_UNLESS(crypto_cfg.generate_key != nullptr, ResultInvalidArgument);
// Generate keys for header.
using AesXtsStorageForNcaHeader = AesXtsStorage;
constexpr const s32 HeaderKeyTypeValues[NcaCryptoConfiguration::HeaderEncryptionKeyCount] = {
static_cast<s32>(KeyType::NcaHeaderKey1),
static_cast<s32>(KeyType::NcaHeaderKey2),
};
u8 header_decryption_keys[NcaCryptoConfiguration::HeaderEncryptionKeyCount]
[NcaCryptoConfiguration::Aes128KeySize];
for (size_t i = 0; i < NcaCryptoConfiguration::HeaderEncryptionKeyCount; i++) {
crypto_cfg.generate_key(header_decryption_keys[i], AesXtsStorageForNcaHeader::KeySize,
crypto_cfg.header_encrypted_encryption_keys[i],
AesXtsStorageForNcaHeader::KeySize, HeaderKeyTypeValues[i]);
}
// Create the header storage.
const u8 header_iv[AesXtsStorageForNcaHeader::IvSize] = {};
work_header_storage = std::make_unique<AesXtsStorageForNcaHeader>(
base_storage, header_decryption_keys[0], header_decryption_keys[1],
AesXtsStorageForNcaHeader::KeySize, header_iv, AesXtsStorageForNcaHeader::IvSize,
NcaHeader::XtsBlockSize);
// Check that we successfully created the storage.
R_UNLESS(work_header_storage != nullptr, ResultAllocationMemoryFailedInNcaReaderA);
// Read the header.
work_header_storage->ReadObject(std::addressof(m_header), 0);
// Validate the magic.
if (const Result magic_result = CheckNcaMagic(m_header.magic); R_FAILED(magic_result)) {
// Try to use a plaintext header.
base_storage->ReadObject(std::addressof(m_header), 0);
R_UNLESS(R_SUCCEEDED(CheckNcaMagic(m_header.magic)), magic_result);
// Configure to use the plaintext header.
auto base_storage_size = base_storage->GetSize();
work_header_storage = std::make_shared<OffsetVfsFile>(base_storage, base_storage_size, 0);
R_UNLESS(work_header_storage != nullptr, ResultAllocationMemoryFailedInNcaReaderA);
// Set encryption type as plaintext.
m_header_encryption_type = NcaHeader::EncryptionType::None;
}
// Validate the fixed key signature.
if (m_header.header1_signature_key_generation >
NcaCryptoConfiguration::Header1SignatureKeyGenerationMax) {
LOG_CRITICAL(Frontend,
"NcaCryptoConfiguration::Header1SignatureKeyGenerationMax = {}, "
"m_header.header1_signature_key_generation = {}",
NcaCryptoConfiguration::Header1SignatureKeyGenerationMax,
m_header.header1_signature_key_generation);
}
R_UNLESS(m_header.header1_signature_key_generation <=
NcaCryptoConfiguration::Header1SignatureKeyGenerationMax,
ResultInvalidNcaHeader1SignatureKeyGeneration);
// Verify the header sign1.
if (crypto_cfg.verify_sign1 != nullptr) {
const u8* sig = m_header.header_sign_1.data();
const size_t sig_size = NcaHeader::HeaderSignSize;
const u8* msg =
static_cast<const u8*>(static_cast<const void*>(std::addressof(m_header.magic)));
const size_t msg_size =
NcaHeader::Size - NcaHeader::HeaderSignSize * NcaHeader::HeaderSignCount;
m_is_header_sign1_signature_valid = crypto_cfg.verify_sign1(
sig, sig_size, msg, msg_size, m_header.header1_signature_key_generation);
if (!m_is_header_sign1_signature_valid) {
LOG_WARNING(Common_Filesystem, "Invalid NCA header sign1");
}
}
// Validate the sdk version.
R_UNLESS(m_header.sdk_addon_version >= SdkAddonVersionMin, ResultUnsupportedSdkVersion);
// Validate the key index.
R_UNLESS(m_header.key_index < NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount ||
m_header.key_index == NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexZeroKey,
ResultInvalidNcaKeyIndex);
// Check if we have a rights id.
constexpr const std::array<u8, NcaHeader::RightsIdSize> ZeroRightsId{};
if (std::memcmp(ZeroRightsId.data(), m_header.rights_id.data(), NcaHeader::RightsIdSize) == 0) {
// If we don't, then we don't have an external key, so we need to generate decryption keys.
crypto_cfg.generate_key(
m_decryption_keys[NcaHeader::DecryptionKey_AesCtr], Aes128KeySize,
m_header.encrypted_key_area.data() + NcaHeader::DecryptionKey_AesCtr * Aes128KeySize,
Aes128KeySize, GetKeyTypeValue(m_header.key_index, m_header.GetProperKeyGeneration()));
crypto_cfg.generate_key(
m_decryption_keys[NcaHeader::DecryptionKey_AesXts1], Aes128KeySize,
m_header.encrypted_key_area.data() + NcaHeader::DecryptionKey_AesXts1 * Aes128KeySize,
Aes128KeySize, GetKeyTypeValue(m_header.key_index, m_header.GetProperKeyGeneration()));
crypto_cfg.generate_key(
m_decryption_keys[NcaHeader::DecryptionKey_AesXts2], Aes128KeySize,
m_header.encrypted_key_area.data() + NcaHeader::DecryptionKey_AesXts2 * Aes128KeySize,
Aes128KeySize, GetKeyTypeValue(m_header.key_index, m_header.GetProperKeyGeneration()));
crypto_cfg.generate_key(
m_decryption_keys[NcaHeader::DecryptionKey_AesCtrEx], Aes128KeySize,
m_header.encrypted_key_area.data() + NcaHeader::DecryptionKey_AesCtrEx * Aes128KeySize,
Aes128KeySize, GetKeyTypeValue(m_header.key_index, m_header.GetProperKeyGeneration()));
// Copy the hardware speed emulation key.
std::memcpy(m_decryption_keys[NcaHeader::DecryptionKey_AesCtrHw],
m_header.encrypted_key_area.data() +
NcaHeader::DecryptionKey_AesCtrHw * Aes128KeySize,
Aes128KeySize);
}
// Clear the external decryption key.
std::memset(m_external_decryption_key, 0, sizeof(m_external_decryption_key));
// Set software key availability.
m_is_available_sw_key = crypto_cfg.is_available_sw_key;
// Set our decompressor function getter.
m_get_decompressor = compression_cfg.get_decompressor;
// Set our storages.
m_header_storage = std::move(work_header_storage);
m_body_storage = std::move(base_storage);
R_SUCCEED();
}
VirtualFile NcaReader::GetSharedBodyStorage() {
ASSERT(m_body_storage != nullptr);
return m_body_storage;
}
u32 NcaReader::GetMagic() const {
ASSERT(m_body_storage != nullptr);
return m_header.magic;
}
NcaHeader::DistributionType NcaReader::GetDistributionType() const {
ASSERT(m_body_storage != nullptr);
return m_header.distribution_type;
}
NcaHeader::ContentType NcaReader::GetContentType() const {
ASSERT(m_body_storage != nullptr);
return m_header.content_type;
}
u8 NcaReader::GetHeaderSign1KeyGeneration() const {
ASSERT(m_body_storage != nullptr);
return m_header.header1_signature_key_generation;
}
u8 NcaReader::GetKeyGeneration() const {
ASSERT(m_body_storage != nullptr);
return m_header.GetProperKeyGeneration();
}
u8 NcaReader::GetKeyIndex() const {
ASSERT(m_body_storage != nullptr);
return m_header.key_index;
}
u64 NcaReader::GetContentSize() const {
ASSERT(m_body_storage != nullptr);
return m_header.content_size;
}
u64 NcaReader::GetProgramId() const {
ASSERT(m_body_storage != nullptr);
return m_header.program_id;
}
u32 NcaReader::GetContentIndex() const {
ASSERT(m_body_storage != nullptr);
return m_header.content_index;
}
u32 NcaReader::GetSdkAddonVersion() const {
ASSERT(m_body_storage != nullptr);
return m_header.sdk_addon_version;
}
void NcaReader::GetRightsId(u8* dst, size_t dst_size) const {
ASSERT(dst != nullptr);
ASSERT(dst_size >= NcaHeader::RightsIdSize);
std::memcpy(dst, m_header.rights_id.data(), NcaHeader::RightsIdSize);
}
bool NcaReader::HasFsInfo(s32 index) const {
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return m_header.fs_info[index].start_sector != 0 || m_header.fs_info[index].end_sector != 0;
}
s32 NcaReader::GetFsCount() const {
ASSERT(m_body_storage != nullptr);
for (s32 i = 0; i < NcaHeader::FsCountMax; i++) {
if (!this->HasFsInfo(i)) {
return i;
}
}
return NcaHeader::FsCountMax;
}
const Hash& NcaReader::GetFsHeaderHash(s32 index) const {
ASSERT(m_body_storage != nullptr);
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return m_header.fs_header_hash[index];
}
void NcaReader::GetFsHeaderHash(Hash* dst, s32 index) const {
ASSERT(m_body_storage != nullptr);
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
ASSERT(dst != nullptr);
std::memcpy(dst, std::addressof(m_header.fs_header_hash[index]), sizeof(*dst));
}
void NcaReader::GetFsInfo(NcaHeader::FsInfo* dst, s32 index) const {
ASSERT(m_body_storage != nullptr);
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
ASSERT(dst != nullptr);
std::memcpy(dst, std::addressof(m_header.fs_info[index]), sizeof(*dst));
}
u64 NcaReader::GetFsOffset(s32 index) const {
ASSERT(m_body_storage != nullptr);
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return NcaHeader::SectorToByte(m_header.fs_info[index].start_sector);
}
u64 NcaReader::GetFsEndOffset(s32 index) const {
ASSERT(m_body_storage != nullptr);
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return NcaHeader::SectorToByte(m_header.fs_info[index].end_sector);
}
u64 NcaReader::GetFsSize(s32 index) const {
ASSERT(m_body_storage != nullptr);
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
return NcaHeader::SectorToByte(m_header.fs_info[index].end_sector -
m_header.fs_info[index].start_sector);
}
void NcaReader::GetEncryptedKey(void* dst, size_t size) const {
ASSERT(m_body_storage != nullptr);
ASSERT(dst != nullptr);
ASSERT(size >= NcaHeader::EncryptedKeyAreaSize);
std::memcpy(dst, m_header.encrypted_key_area.data(), NcaHeader::EncryptedKeyAreaSize);
}
const void* NcaReader::GetDecryptionKey(s32 index) const {
ASSERT(m_body_storage != nullptr);
ASSERT(0 <= index && index < NcaHeader::DecryptionKey_Count);
return m_decryption_keys[index];
}
bool NcaReader::HasValidInternalKey() const {
for (s32 i = 0; i < NcaHeader::DecryptionKey_Count; i++) {
if (std::memcmp(ZeroKey.data(), m_header.encrypted_key_area.data() + i * Aes128KeySize,
Aes128KeySize) != 0) {
return true;
}
}
return false;
}
bool NcaReader::HasInternalDecryptionKeyForAesHw() const {
return std::memcmp(ZeroKey.data(), this->GetDecryptionKey(NcaHeader::DecryptionKey_AesCtrHw),
Aes128KeySize) != 0;
}
bool NcaReader::IsSoftwareAesPrioritized() const {
return m_is_software_aes_prioritized;
}
void NcaReader::PrioritizeSoftwareAes() {
m_is_software_aes_prioritized = true;
}
bool NcaReader::IsAvailableSwKey() const {
return m_is_available_sw_key;
}
bool NcaReader::HasExternalDecryptionKey() const {
return std::memcmp(ZeroKey.data(), this->GetExternalDecryptionKey(), Aes128KeySize) != 0;
}
const void* NcaReader::GetExternalDecryptionKey() const {
return m_external_decryption_key;
}
void NcaReader::SetExternalDecryptionKey(const void* src, size_t size) {
ASSERT(src != nullptr);
ASSERT(size == sizeof(m_external_decryption_key));
std::memcpy(m_external_decryption_key, src, sizeof(m_external_decryption_key));
}
void NcaReader::GetRawData(void* dst, size_t dst_size) const {
ASSERT(m_body_storage != nullptr);
ASSERT(dst != nullptr);
ASSERT(dst_size >= sizeof(NcaHeader));
std::memcpy(dst, std::addressof(m_header), sizeof(NcaHeader));
}
GetDecompressorFunction NcaReader::GetDecompressor() const {
ASSERT(m_get_decompressor != nullptr);
return m_get_decompressor;
}
NcaHeader::EncryptionType NcaReader::GetEncryptionType() const {
return m_header_encryption_type;
}
Result NcaReader::ReadHeader(NcaFsHeader* dst, s32 index) const {
ASSERT(dst != nullptr);
ASSERT(0 <= index && index < NcaHeader::FsCountMax);
const s64 offset = sizeof(NcaHeader) + sizeof(NcaFsHeader) * index;
m_header_storage->ReadObject(dst, offset);
R_SUCCEED();
}
bool NcaReader::GetHeaderSign1Valid() const {
return m_is_header_sign1_signature_valid;
}
void NcaReader::GetHeaderSign2(void* dst, size_t size) const {
ASSERT(dst != nullptr);
ASSERT(size == NcaHeader::HeaderSignSize);
std::memcpy(dst, m_header.header_sign_2.data(), size);
}
Result NcaFsHeaderReader::Initialize(const NcaReader& reader, s32 index) {
// Reset ourselves to uninitialized.
m_fs_index = -1;
// Read the header.
R_TRY(reader.ReadHeader(std::addressof(m_data), index));
// Set our index.
m_fs_index = index;
R_SUCCEED();
}
void NcaFsHeaderReader::GetRawData(void* dst, size_t dst_size) const {
ASSERT(this->IsInitialized());
ASSERT(dst != nullptr);
ASSERT(dst_size >= sizeof(NcaFsHeader));
std::memcpy(dst, std::addressof(m_data), sizeof(NcaFsHeader));
}
NcaFsHeader::HashData& NcaFsHeaderReader::GetHashData() {
ASSERT(this->IsInitialized());
return m_data.hash_data;
}
const NcaFsHeader::HashData& NcaFsHeaderReader::GetHashData() const {
ASSERT(this->IsInitialized());
return m_data.hash_data;
}
u16 NcaFsHeaderReader::GetVersion() const {
ASSERT(this->IsInitialized());
return m_data.version;
}
s32 NcaFsHeaderReader::GetFsIndex() const {
ASSERT(this->IsInitialized());
return m_fs_index;
}
NcaFsHeader::FsType NcaFsHeaderReader::GetFsType() const {
ASSERT(this->IsInitialized());
return m_data.fs_type;
}
NcaFsHeader::HashType NcaFsHeaderReader::GetHashType() const {
ASSERT(this->IsInitialized());
return m_data.hash_type;
}
NcaFsHeader::EncryptionType NcaFsHeaderReader::GetEncryptionType() const {
ASSERT(this->IsInitialized());
return m_data.encryption_type;
}
NcaPatchInfo& NcaFsHeaderReader::GetPatchInfo() {
ASSERT(this->IsInitialized());
return m_data.patch_info;
}
const NcaPatchInfo& NcaFsHeaderReader::GetPatchInfo() const {
ASSERT(this->IsInitialized());
return m_data.patch_info;
}
const NcaAesCtrUpperIv NcaFsHeaderReader::GetAesCtrUpperIv() const {
ASSERT(this->IsInitialized());
return m_data.aes_ctr_upper_iv;
}
bool NcaFsHeaderReader::IsSkipLayerHashEncryption() const {
ASSERT(this->IsInitialized());
return m_data.IsSkipLayerHashEncryption();
}
Result NcaFsHeaderReader::GetHashTargetOffset(s64* out) const {
ASSERT(out != nullptr);
ASSERT(this->IsInitialized());
R_RETURN(m_data.GetHashTargetOffset(out));
}
bool NcaFsHeaderReader::ExistsSparseLayer() const {
ASSERT(this->IsInitialized());
return m_data.sparse_info.generation != 0;
}
NcaSparseInfo& NcaFsHeaderReader::GetSparseInfo() {
ASSERT(this->IsInitialized());
return m_data.sparse_info;
}
const NcaSparseInfo& NcaFsHeaderReader::GetSparseInfo() const {
ASSERT(this->IsInitialized());
return m_data.sparse_info;
}
bool NcaFsHeaderReader::ExistsCompressionLayer() const {
ASSERT(this->IsInitialized());
return m_data.compression_info.bucket.offset != 0 && m_data.compression_info.bucket.size != 0;
}
NcaCompressionInfo& NcaFsHeaderReader::GetCompressionInfo() {
ASSERT(this->IsInitialized());
return m_data.compression_info;
}
const NcaCompressionInfo& NcaFsHeaderReader::GetCompressionInfo() const {
ASSERT(this->IsInitialized());
return m_data.compression_info;
}
bool NcaFsHeaderReader::ExistsPatchMetaHashLayer() const {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_data_info.size != 0 && this->GetPatchInfo().HasIndirectTable();
}
NcaMetaDataHashDataInfo& NcaFsHeaderReader::GetPatchMetaDataHashDataInfo() {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_data_info;
}
const NcaMetaDataHashDataInfo& NcaFsHeaderReader::GetPatchMetaDataHashDataInfo() const {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_data_info;
}
NcaFsHeader::MetaDataHashType NcaFsHeaderReader::GetPatchMetaHashType() const {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_type;
}
bool NcaFsHeaderReader::ExistsSparseMetaHashLayer() const {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_data_info.size != 0 && this->ExistsSparseLayer();
}
NcaMetaDataHashDataInfo& NcaFsHeaderReader::GetSparseMetaDataHashDataInfo() {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_data_info;
}
const NcaMetaDataHashDataInfo& NcaFsHeaderReader::GetSparseMetaDataHashDataInfo() const {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_data_info;
}
NcaFsHeader::MetaDataHashType NcaFsHeaderReader::GetSparseMetaHashType() const {
ASSERT(this->IsInitialized());
return m_data.meta_data_hash_type;
}
} // namespace FileSys

View File

@ -0,0 +1,61 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "core/file_sys/fssystem/fssystem_pooled_buffer.h"
namespace FileSys {
namespace {
constexpr size_t HeapBlockSize = BufferPoolAlignment;
static_assert(HeapBlockSize == 4_KiB);
// A heap block is 4KiB. An order is a power of two.
// This gives blocks of the order 32KiB, 512KiB, 4MiB.
constexpr s32 HeapOrderMax = 7;
constexpr s32 HeapOrderMaxForLarge = HeapOrderMax + 3;
constexpr size_t HeapAllocatableSizeMax = HeapBlockSize * (static_cast<size_t>(1) << HeapOrderMax);
constexpr size_t HeapAllocatableSizeMaxForLarge =
HeapBlockSize * (static_cast<size_t>(1) << HeapOrderMaxForLarge);
} // namespace
size_t PooledBuffer::GetAllocatableSizeMaxCore(bool large) {
return large ? HeapAllocatableSizeMaxForLarge : HeapAllocatableSizeMax;
}
void PooledBuffer::AllocateCore(size_t ideal_size, size_t required_size, bool large) {
// Ensure preconditions.
ASSERT(m_buffer == nullptr);
// Check that we can allocate this size.
ASSERT(required_size <= GetAllocatableSizeMaxCore(large));
const size_t target_size =
std::min(std::max(ideal_size, required_size), GetAllocatableSizeMaxCore(large));
// Dummy implementation for allocate.
if (target_size > 0) {
m_buffer =
reinterpret_cast<char*>(::operator new(target_size, std::align_val_t{HeapBlockSize}));
m_size = target_size;
// Ensure postconditions.
ASSERT(m_buffer != nullptr);
}
}
void PooledBuffer::Shrink(size_t ideal_size) {
ASSERT(ideal_size <= GetAllocatableSizeMaxCore(true));
// Shrinking to zero means that we have no buffer.
if (ideal_size == 0) {
::operator delete(m_buffer, std::align_val_t{HeapBlockSize});
m_buffer = nullptr;
m_size = ideal_size;
}
}
} // namespace FileSys

View File

@ -0,0 +1,96 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/literals.h"
#include "core/hle/result.h"
namespace FileSys {
using namespace Common::Literals;
constexpr inline size_t BufferPoolAlignment = 4_KiB;
constexpr inline size_t BufferPoolWorkSize = 320;
class PooledBuffer {
YUZU_NON_COPYABLE(PooledBuffer);
private:
char* m_buffer;
size_t m_size;
private:
static size_t GetAllocatableSizeMaxCore(bool large);
public:
static size_t GetAllocatableSizeMax() {
return GetAllocatableSizeMaxCore(false);
}
static size_t GetAllocatableParticularlyLargeSizeMax() {
return GetAllocatableSizeMaxCore(true);
}
private:
void Swap(PooledBuffer& rhs) {
std::swap(m_buffer, rhs.m_buffer);
std::swap(m_size, rhs.m_size);
}
public:
// Constructor/Destructor.
constexpr PooledBuffer() : m_buffer(), m_size() {}
PooledBuffer(size_t ideal_size, size_t required_size) : m_buffer(), m_size() {
this->Allocate(ideal_size, required_size);
}
~PooledBuffer() {
this->Deallocate();
}
// Move and assignment.
explicit PooledBuffer(PooledBuffer&& rhs) : m_buffer(rhs.m_buffer), m_size(rhs.m_size) {
rhs.m_buffer = nullptr;
rhs.m_size = 0;
}
PooledBuffer& operator=(PooledBuffer&& rhs) {
PooledBuffer(std::move(rhs)).Swap(*this);
return *this;
}
// Allocation API.
void Allocate(size_t ideal_size, size_t required_size) {
return this->AllocateCore(ideal_size, required_size, false);
}
void AllocateParticularlyLarge(size_t ideal_size, size_t required_size) {
return this->AllocateCore(ideal_size, required_size, true);
}
void Shrink(size_t ideal_size);
void Deallocate() {
// Shrink the buffer to empty.
this->Shrink(0);
ASSERT(m_buffer == nullptr);
}
char* GetBuffer() const {
ASSERT(m_buffer != nullptr);
return m_buffer;
}
size_t GetSize() const {
ASSERT(m_buffer != nullptr);
return m_size;
}
private:
void AllocateCore(size_t ideal_size, size_t required_size, bool large);
};
} // namespace FileSys

View File

@ -0,0 +1,40 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/file_sys/fssystem/fssystem_sparse_storage.h"
namespace FileSys {
size_t SparseStorage::Read(u8* buffer, size_t size, size_t offset) const {
// Validate preconditions.
ASSERT(offset >= 0);
ASSERT(this->IsInitialized());
ASSERT(buffer != nullptr);
// Allow zero size.
if (size == 0) {
return size;
}
SparseStorage* self = const_cast<SparseStorage*>(this);
if (self->GetEntryTable().IsEmpty()) {
BucketTree::Offsets table_offsets;
ASSERT(R_SUCCEEDED(self->GetEntryTable().GetOffsets(std::addressof(table_offsets))));
ASSERT(table_offsets.IsInclude(offset, size));
std::memset(buffer, 0, size);
} else {
self->OperatePerEntry<false, true>(
offset, size,
[=](VirtualFile storage, s64 data_offset, s64 cur_offset, s64 cur_size) -> Result {
storage->Read(reinterpret_cast<u8*>(buffer) + (cur_offset - offset),
static_cast<size_t>(cur_size), data_offset);
R_SUCCEED();
});
}
return size;
}
} // namespace FileSys

View File

@ -0,0 +1,73 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/fssystem/fssystem_indirect_storage.h"
namespace FileSys {
class SparseStorage : public IndirectStorage {
YUZU_NON_COPYABLE(SparseStorage);
YUZU_NON_MOVEABLE(SparseStorage);
private:
class ZeroStorage : public IReadOnlyStorage {
public:
ZeroStorage() {}
virtual ~ZeroStorage() {}
virtual size_t GetSize() const override {
return std::numeric_limits<size_t>::max();
}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override {
ASSERT(offset >= 0);
ASSERT(buffer != nullptr || size == 0);
if (size > 0) {
std::memset(buffer, 0, size);
}
return size;
}
};
private:
VirtualFile m_zero_storage;
public:
SparseStorage() : IndirectStorage(), m_zero_storage(std::make_shared<ZeroStorage>()) {}
virtual ~SparseStorage() {}
using IndirectStorage::Initialize;
void Initialize(s64 end_offset) {
this->GetEntryTable().Initialize(NodeSize, end_offset);
this->SetZeroStorage();
}
void SetDataStorage(VirtualFile storage) {
ASSERT(this->IsInitialized());
this->SetStorage(0, storage);
this->SetZeroStorage();
}
template <typename T>
void SetDataStorage(T storage, s64 offset, s64 size) {
ASSERT(this->IsInitialized());
this->SetStorage(0, storage, offset, size);
this->SetZeroStorage();
}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override;
private:
void SetZeroStorage() {
return this->SetStorage(1, m_zero_storage, 0, std::numeric_limits<s64>::max());
}
};
} // namespace FileSys

View File

@ -0,0 +1,80 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/file_sys/fssystem/fs_i_storage.h"
namespace FileSys {
class RegionSwitchStorage : public IReadOnlyStorage {
YUZU_NON_COPYABLE(RegionSwitchStorage);
YUZU_NON_MOVEABLE(RegionSwitchStorage);
public:
struct Region {
s64 offset;
s64 size;
};
private:
VirtualFile m_inside_region_storage;
VirtualFile m_outside_region_storage;
Region m_region;
public:
RegionSwitchStorage(VirtualFile&& i, VirtualFile&& o, Region r)
: m_inside_region_storage(std::move(i)), m_outside_region_storage(std::move(o)),
m_region(r) {}
virtual size_t Read(u8* buffer, size_t size, size_t offset) const override {
// Process until we're done.
size_t processed = 0;
while (processed < size) {
// Process on the appropriate storage.
s64 cur_size = 0;
if (this->CheckRegions(std::addressof(cur_size), offset + processed,
size - processed)) {
m_inside_region_storage->Read(buffer + processed, cur_size, offset + processed);
} else {
m_outside_region_storage->Read(buffer + processed, cur_size, offset + processed);
}
// Advance.
processed += cur_size;
}
return size;
}
virtual size_t GetSize() const override {
return m_inside_region_storage->GetSize();
}
private:
bool CheckRegions(s64* out_current_size, s64 offset, s64 size) const {
// Check if our region contains the access.
if (m_region.offset <= offset) {
if (offset < m_region.offset + m_region.size) {
if (m_region.offset + m_region.size <= offset + size) {
*out_current_size = m_region.offset + m_region.size - offset;
} else {
*out_current_size = size;
}
return true;
} else {
*out_current_size = size;
return false;
}
} else {
if (m_region.offset <= offset + size) {
*out_current_size = m_region.offset - offset;
} else {
*out_current_size = size;
}
return false;
}
}
};
} // namespace FileSys

View File

@ -0,0 +1,24 @@
#include "core/file_sys/fssystem/fssystem_utility.h"
namespace FileSys {
void AddCounter(void* counter_, size_t counter_size, u64 value) {
u8* counter = static_cast<u8*>(counter_);
u64 remaining = value;
u8 carry = 0;
for (size_t i = 0; i < counter_size; i++) {
auto sum = counter[counter_size - 1 - i] + (remaining & 0xFF) + carry;
carry = static_cast<u8>(sum >> (sizeof(u8) * 8));
auto sum8 = static_cast<u8>(sum & 0xFF);
counter[counter_size - 1 - i] = sum8;
remaining >>= (sizeof(u8) * 8);
if (carry == 0 && remaining == 0) {
break;
}
}
}
} // namespace FileSys

View File

@ -0,0 +1,12 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_funcs.h"
namespace FileSys {
void AddCounter(void* counter, size_t counter_size, u64 value);
}