Merge pull request #9884 from liamwhite/service-cleanup

service: miscellaneous cleanups
This commit is contained in:
Morph
2023-03-03 22:51:17 -05:00
committed by GitHub
181 changed files with 2111 additions and 2178 deletions

View File

@ -1,531 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <array>
#include <sstream>
#include <boost/range/algorithm_ext/erase.hpp>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/scratch_buffer.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_auto_object.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_server_port.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/memory.h"
namespace Kernel {
SessionRequestHandler::SessionRequestHandler(KernelCore& kernel_, const char* service_name_)
: kernel{kernel_} {}
SessionRequestHandler::~SessionRequestHandler() = default;
SessionRequestManager::SessionRequestManager(KernelCore& kernel_,
Service::ServerManager& server_manager_)
: kernel{kernel_}, server_manager{server_manager_} {}
SessionRequestManager::~SessionRequestManager() = default;
bool SessionRequestManager::HasSessionRequestHandler(const HLERequestContext& context) const {
if (IsDomain() && context.HasDomainMessageHeader()) {
const auto& message_header = context.GetDomainMessageHeader();
const auto object_id = message_header.object_id;
if (object_id > DomainHandlerCount()) {
LOG_CRITICAL(IPC, "object_id {} is too big!", object_id);
return false;
}
return !DomainHandler(object_id - 1).expired();
} else {
return session_handler != nullptr;
}
}
Result SessionRequestManager::CompleteSyncRequest(KServerSession* server_session,
HLERequestContext& context) {
Result result = ResultSuccess;
// If the session has been converted to a domain, handle the domain request
if (this->HasSessionRequestHandler(context)) {
if (IsDomain() && context.HasDomainMessageHeader()) {
result = HandleDomainSyncRequest(server_session, context);
// If there is no domain header, the regular session handler is used
} else if (this->HasSessionHandler()) {
// If this manager has an associated HLE handler, forward the request to it.
result = this->SessionHandler().HandleSyncRequest(*server_session, context);
}
} else {
ASSERT_MSG(false, "Session handler is invalid, stubbing response!");
IPC::ResponseBuilder rb(context, 2);
rb.Push(ResultSuccess);
}
if (convert_to_domain) {
ASSERT_MSG(!IsDomain(), "ServerSession is already a domain instance.");
this->ConvertToDomain();
convert_to_domain = false;
}
return result;
}
Result SessionRequestManager::HandleDomainSyncRequest(KServerSession* server_session,
HLERequestContext& context) {
if (!context.HasDomainMessageHeader()) {
return ResultSuccess;
}
// Set domain handlers in HLE context, used for domain objects (IPC interfaces) as inputs
ASSERT(context.GetManager().get() == this);
// If there is a DomainMessageHeader, then this is CommandType "Request"
const auto& domain_message_header = context.GetDomainMessageHeader();
const u32 object_id{domain_message_header.object_id};
switch (domain_message_header.command) {
case IPC::DomainMessageHeader::CommandType::SendMessage:
if (object_id > this->DomainHandlerCount()) {
LOG_CRITICAL(IPC,
"object_id {} is too big! This probably means a recent service call "
"needed to return a new interface!",
object_id);
ASSERT(false);
return ResultSuccess; // Ignore error if asserts are off
}
if (auto strong_ptr = this->DomainHandler(object_id - 1).lock()) {
return strong_ptr->HandleSyncRequest(*server_session, context);
} else {
ASSERT(false);
return ResultSuccess;
}
case IPC::DomainMessageHeader::CommandType::CloseVirtualHandle: {
LOG_DEBUG(IPC, "CloseVirtualHandle, object_id=0x{:08X}", object_id);
this->CloseDomainHandler(object_id - 1);
IPC::ResponseBuilder rb{context, 2};
rb.Push(ResultSuccess);
return ResultSuccess;
}
}
LOG_CRITICAL(IPC, "Unknown domain command={}", domain_message_header.command.Value());
ASSERT(false);
return ResultSuccess;
}
HLERequestContext::HLERequestContext(KernelCore& kernel_, Core::Memory::Memory& memory_,
KServerSession* server_session_, KThread* thread_)
: server_session(server_session_), thread(thread_), kernel{kernel_}, memory{memory_} {
cmd_buf[0] = 0;
}
HLERequestContext::~HLERequestContext() = default;
void HLERequestContext::ParseCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf,
bool incoming) {
IPC::RequestParser rp(src_cmdbuf);
command_header = rp.PopRaw<IPC::CommandHeader>();
if (command_header->IsCloseCommand()) {
// Close does not populate the rest of the IPC header
return;
}
// If handle descriptor is present, add size of it
if (command_header->enable_handle_descriptor) {
handle_descriptor_header = rp.PopRaw<IPC::HandleDescriptorHeader>();
if (handle_descriptor_header->send_current_pid) {
pid = rp.Pop<u64>();
}
if (incoming) {
// Populate the object lists with the data in the IPC request.
incoming_copy_handles.reserve(handle_descriptor_header->num_handles_to_copy);
incoming_move_handles.reserve(handle_descriptor_header->num_handles_to_move);
for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_copy; ++handle) {
incoming_copy_handles.push_back(rp.Pop<Handle>());
}
for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_move; ++handle) {
incoming_move_handles.push_back(rp.Pop<Handle>());
}
} else {
// For responses we just ignore the handles, they're empty and will be populated when
// translating the response.
rp.Skip(handle_descriptor_header->num_handles_to_copy, false);
rp.Skip(handle_descriptor_header->num_handles_to_move, false);
}
}
buffer_x_desciptors.reserve(command_header->num_buf_x_descriptors);
buffer_a_desciptors.reserve(command_header->num_buf_a_descriptors);
buffer_b_desciptors.reserve(command_header->num_buf_b_descriptors);
buffer_w_desciptors.reserve(command_header->num_buf_w_descriptors);
for (u32 i = 0; i < command_header->num_buf_x_descriptors; ++i) {
buffer_x_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorX>());
}
for (u32 i = 0; i < command_header->num_buf_a_descriptors; ++i) {
buffer_a_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
for (u32 i = 0; i < command_header->num_buf_b_descriptors; ++i) {
buffer_b_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
for (u32 i = 0; i < command_header->num_buf_w_descriptors; ++i) {
buffer_w_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
const auto buffer_c_offset = rp.GetCurrentOffset() + command_header->data_size;
if (!command_header->IsTipc()) {
// Padding to align to 16 bytes
rp.AlignWithPadding();
if (GetManager()->IsDomain() &&
((command_header->type == IPC::CommandType::Request ||
command_header->type == IPC::CommandType::RequestWithContext) ||
!incoming)) {
// If this is an incoming message, only CommandType "Request" has a domain header
// All outgoing domain messages have the domain header, if only incoming has it
if (incoming || domain_message_header) {
domain_message_header = rp.PopRaw<IPC::DomainMessageHeader>();
} else {
if (GetManager()->IsDomain()) {
LOG_WARNING(IPC, "Domain request has no DomainMessageHeader!");
}
}
}
data_payload_header = rp.PopRaw<IPC::DataPayloadHeader>();
data_payload_offset = rp.GetCurrentOffset();
if (domain_message_header &&
domain_message_header->command ==
IPC::DomainMessageHeader::CommandType::CloseVirtualHandle) {
// CloseVirtualHandle command does not have SFC* or any data
return;
}
if (incoming) {
ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'I'));
} else {
ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'O'));
}
}
rp.SetCurrentOffset(buffer_c_offset);
// For Inline buffers, the response data is written directly to buffer_c_offset
// and in this case we don't have any BufferDescriptorC on the request.
if (command_header->buf_c_descriptor_flags >
IPC::CommandHeader::BufferDescriptorCFlag::InlineDescriptor) {
if (command_header->buf_c_descriptor_flags ==
IPC::CommandHeader::BufferDescriptorCFlag::OneDescriptor) {
buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
} else {
u32 num_buf_c_descriptors =
static_cast<u32>(command_header->buf_c_descriptor_flags.Value()) - 2;
// This is used to detect possible underflows, in case something is broken
// with the two ifs above and the flags value is == 0 || == 1.
ASSERT(num_buf_c_descriptors < 14);
for (u32 i = 0; i < num_buf_c_descriptors; ++i) {
buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
}
}
}
rp.SetCurrentOffset(data_payload_offset);
command = rp.Pop<u32_le>();
rp.Skip(1, false); // The command is actually an u64, but we don't use the high part.
}
Result HLERequestContext::PopulateFromIncomingCommandBuffer(const KHandleTable& handle_table,
u32_le* src_cmdbuf) {
ParseCommandBuffer(handle_table, src_cmdbuf, true);
if (command_header->IsCloseCommand()) {
// Close does not populate the rest of the IPC header
return ResultSuccess;
}
std::copy_n(src_cmdbuf, IPC::COMMAND_BUFFER_LENGTH, cmd_buf.begin());
return ResultSuccess;
}
Result HLERequestContext::WriteToOutgoingCommandBuffer(KThread& requesting_thread) {
auto current_offset = handles_offset;
auto& owner_process = *requesting_thread.GetOwnerProcess();
auto& handle_table = owner_process.GetHandleTable();
for (auto& object : outgoing_copy_objects) {
Handle handle{};
if (object) {
R_TRY(handle_table.Add(&handle, object));
}
cmd_buf[current_offset++] = handle;
}
for (auto& object : outgoing_move_objects) {
Handle handle{};
if (object) {
R_TRY(handle_table.Add(&handle, object));
// Close our reference to the object, as it is being moved to the caller.
object->Close();
}
cmd_buf[current_offset++] = handle;
}
// Write the domain objects to the command buffer, these go after the raw untranslated data.
// TODO(Subv): This completely ignores C buffers.
if (GetManager()->IsDomain()) {
current_offset = domain_offset - static_cast<u32>(outgoing_domain_objects.size());
for (auto& object : outgoing_domain_objects) {
GetManager()->AppendDomainHandler(std::move(object));
cmd_buf[current_offset++] = static_cast<u32_le>(GetManager()->DomainHandlerCount());
}
}
// Copy the translated command buffer back into the thread's command buffer area.
memory.WriteBlock(owner_process, requesting_thread.GetTLSAddress(), cmd_buf.data(),
write_size * sizeof(u32));
return ResultSuccess;
}
std::vector<u8> HLERequestContext::ReadBufferCopy(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return {}; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
std::vector<u8> buffer(BufferDescriptorA()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorA()[buffer_index].Address(), buffer.data(), buffer.size());
return buffer;
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return {}; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
std::vector<u8> buffer(BufferDescriptorX()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorX()[buffer_index].Address(), buffer.data(), buffer.size());
return buffer;
}
}
std::span<const u8> HLERequestContext::ReadBuffer(std::size_t buffer_index) const {
static thread_local std::array<Common::ScratchBuffer<u8>, 2> read_buffer_a;
static thread_local std::array<Common::ScratchBuffer<u8>, 2> read_buffer_x;
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return {}; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
auto& read_buffer = read_buffer_a[buffer_index];
read_buffer.resize_destructive(BufferDescriptorA()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorA()[buffer_index].Address(), read_buffer.data(),
read_buffer.size());
return read_buffer;
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return {}; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
auto& read_buffer = read_buffer_x[buffer_index];
read_buffer.resize_destructive(BufferDescriptorX()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorX()[buffer_index].Address(), read_buffer.data(),
read_buffer.size());
return read_buffer;
}
}
std::size_t HLERequestContext::WriteBuffer(const void* buffer, std::size_t size,
std::size_t buffer_index) const {
if (size == 0) {
LOG_WARNING(Core, "skip empty buffer write");
return 0;
}
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
const std::size_t buffer_size{GetWriteBufferSize(buffer_index)};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
size = buffer_size; // TODO(bunnei): This needs to be HW tested
}
if (is_buffer_b) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size() >= size,
{ return 0; }, "BufferDescriptorB is invalid, index={}, size={}", buffer_index, size);
WriteBufferB(buffer, size, buffer_index);
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorC().size() > buffer_index &&
BufferDescriptorC()[buffer_index].Size() >= size,
{ return 0; }, "BufferDescriptorC is invalid, index={}, size={}", buffer_index, size);
WriteBufferC(buffer, size, buffer_index);
}
return size;
}
std::size_t HLERequestContext::WriteBufferB(const void* buffer, std::size_t size,
std::size_t buffer_index) const {
if (buffer_index >= BufferDescriptorB().size() || size == 0) {
return 0;
}
const auto buffer_size{BufferDescriptorB()[buffer_index].Size()};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
size = buffer_size; // TODO(bunnei): This needs to be HW tested
}
memory.WriteBlock(BufferDescriptorB()[buffer_index].Address(), buffer, size);
return size;
}
std::size_t HLERequestContext::WriteBufferC(const void* buffer, std::size_t size,
std::size_t buffer_index) const {
if (buffer_index >= BufferDescriptorC().size() || size == 0) {
return 0;
}
const auto buffer_size{BufferDescriptorC()[buffer_index].Size()};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
size = buffer_size; // TODO(bunnei): This needs to be HW tested
}
memory.WriteBlock(BufferDescriptorC()[buffer_index].Address(), buffer, size);
return size;
}
std::size_t HLERequestContext::GetReadBufferSize(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return 0; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
return BufferDescriptorA()[buffer_index].Size();
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return 0; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
return BufferDescriptorX()[buffer_index].Size();
}
}
std::size_t HLERequestContext::GetWriteBufferSize(std::size_t buffer_index) const {
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
if (is_buffer_b) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorB().size() > buffer_index, { return 0; },
"BufferDescriptorB invalid buffer_index {}", buffer_index);
return BufferDescriptorB()[buffer_index].Size();
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorC().size() > buffer_index, { return 0; },
"BufferDescriptorC invalid buffer_index {}", buffer_index);
return BufferDescriptorC()[buffer_index].Size();
}
return 0;
}
bool HLERequestContext::CanReadBuffer(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
return BufferDescriptorA().size() > buffer_index;
} else {
return BufferDescriptorX().size() > buffer_index;
}
}
bool HLERequestContext::CanWriteBuffer(std::size_t buffer_index) const {
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
if (is_buffer_b) {
return BufferDescriptorB().size() > buffer_index;
} else {
return BufferDescriptorC().size() > buffer_index;
}
}
std::string HLERequestContext::Description() const {
if (!command_header) {
return "No command header available";
}
std::ostringstream s;
s << "IPC::CommandHeader: Type:" << static_cast<u32>(command_header->type.Value());
s << ", X(Pointer):" << command_header->num_buf_x_descriptors;
if (command_header->num_buf_x_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_x_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorX()[i].Size();
if (i < command_header->num_buf_x_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", A(Send):" << command_header->num_buf_a_descriptors;
if (command_header->num_buf_a_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_a_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorA()[i].Size();
if (i < command_header->num_buf_a_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", B(Receive):" << command_header->num_buf_b_descriptors;
if (command_header->num_buf_b_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_b_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorB()[i].Size();
if (i < command_header->num_buf_b_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", C(ReceiveList):" << BufferDescriptorC().size();
if (!BufferDescriptorC().empty()) {
s << '[';
for (u64 i = 0; i < BufferDescriptorC().size(); ++i) {
s << "0x" << std::hex << BufferDescriptorC()[i].Size();
if (i < BufferDescriptorC().size() - 1)
s << ", ";
}
s << ']';
}
s << ", data_size:" << command_header->data_size.Value();
return s.str();
}
} // namespace Kernel

View File

@ -1,421 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <functional>
#include <memory>
#include <optional>
#include <span>
#include <string>
#include <type_traits>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/concepts.h"
#include "common/swap.h"
#include "core/hle/ipc.h"
#include "core/hle/kernel/svc_common.h"
union Result;
namespace Core::Memory {
class Memory;
}
namespace IPC {
class ResponseBuilder;
}
namespace Service {
class ServiceFrameworkBase;
class ServerManager;
} // namespace Service
namespace Kernel {
class Domain;
class HLERequestContext;
class KAutoObject;
class KernelCore;
class KEvent;
class KHandleTable;
class KServerPort;
class KProcess;
class KServerSession;
class KThread;
class KReadableEvent;
class KSession;
class SessionRequestManager;
/**
* Interface implemented by HLE Session handlers.
* This can be provided to a ServerSession in order to hook into several relevant events
* (such as a new connection or a SyncRequest) so they can be implemented in the emulator.
*/
class SessionRequestHandler : public std::enable_shared_from_this<SessionRequestHandler> {
public:
SessionRequestHandler(KernelCore& kernel_, const char* service_name_);
virtual ~SessionRequestHandler();
/**
* Handles a sync request from the emulated application.
* @param server_session The ServerSession that was triggered for this sync request,
* it should be used to differentiate which client (As in ClientSession) we're answering to.
* TODO(Subv): Use a wrapper structure to hold all the information relevant to
* this request (ServerSession, Originator thread, Translated command buffer, etc).
* @returns Result the result code of the translate operation.
*/
virtual Result HandleSyncRequest(Kernel::KServerSession& session,
Kernel::HLERequestContext& context) = 0;
protected:
KernelCore& kernel;
};
using SessionRequestHandlerWeakPtr = std::weak_ptr<SessionRequestHandler>;
using SessionRequestHandlerPtr = std::shared_ptr<SessionRequestHandler>;
/**
* Manages the underlying HLE requests for a session, and whether (or not) the session should be
* treated as a domain. This is managed separately from server sessions, as this state is shared
* when objects are cloned.
*/
class SessionRequestManager final {
public:
explicit SessionRequestManager(KernelCore& kernel, Service::ServerManager& server_manager);
~SessionRequestManager();
bool IsDomain() const {
return is_domain;
}
void ConvertToDomain() {
domain_handlers = {session_handler};
is_domain = true;
}
void ConvertToDomainOnRequestEnd() {
convert_to_domain = true;
}
std::size_t DomainHandlerCount() const {
return domain_handlers.size();
}
bool HasSessionHandler() const {
return session_handler != nullptr;
}
SessionRequestHandler& SessionHandler() {
return *session_handler;
}
const SessionRequestHandler& SessionHandler() const {
return *session_handler;
}
void CloseDomainHandler(std::size_t index) {
if (index < DomainHandlerCount()) {
domain_handlers[index] = nullptr;
} else {
ASSERT_MSG(false, "Unexpected handler index {}", index);
}
}
SessionRequestHandlerWeakPtr DomainHandler(std::size_t index) const {
ASSERT_MSG(index < DomainHandlerCount(), "Unexpected handler index {}", index);
return domain_handlers.at(index);
}
void AppendDomainHandler(SessionRequestHandlerPtr&& handler) {
domain_handlers.emplace_back(std::move(handler));
}
void SetSessionHandler(SessionRequestHandlerPtr&& handler) {
session_handler = std::move(handler);
}
bool HasSessionRequestHandler(const HLERequestContext& context) const;
Result HandleDomainSyncRequest(KServerSession* server_session, HLERequestContext& context);
Result CompleteSyncRequest(KServerSession* server_session, HLERequestContext& context);
Service::ServerManager& GetServerManager() {
return server_manager;
}
// TODO: remove this when sm: is implemented with the proper IUserInterface
// abstraction, creating a new C++ handler object for each session:
bool GetIsInitializedForSm() const {
return is_initialized_for_sm;
}
void SetIsInitializedForSm() {
is_initialized_for_sm = true;
}
private:
bool convert_to_domain{};
bool is_domain{};
bool is_initialized_for_sm{};
SessionRequestHandlerPtr session_handler;
std::vector<SessionRequestHandlerPtr> domain_handlers;
private:
KernelCore& kernel;
Service::ServerManager& server_manager;
};
/**
* Class containing information about an in-flight IPC request being handled by an HLE service
* implementation. Services should avoid using old global APIs (e.g. Kernel::GetCommandBuffer()) and
* when possible use the APIs in this class to service the request.
*
* HLE handle protocol
* ===================
*
* To avoid needing HLE services to keep a separate handle table, or having to directly modify the
* requester's table, a tweaked protocol is used to receive and send handles in requests. The kernel
* will decode the incoming handles into object pointers and insert a id in the buffer where the
* handle would normally be. The service then calls GetIncomingHandle() with that id to get the
* pointer to the object. Similarly, instead of inserting a handle into the command buffer, the
* service calls AddOutgoingHandle() and stores the returned id where the handle would normally go.
*
* The end result is similar to just giving services their own real handle tables, but since these
* ids are local to a specific context, it avoids requiring services to manage handles for objects
* across multiple calls and ensuring that unneeded handles are cleaned up.
*/
class HLERequestContext {
public:
explicit HLERequestContext(KernelCore& kernel, Core::Memory::Memory& memory,
KServerSession* session, KThread* thread);
~HLERequestContext();
/// Returns a pointer to the IPC command buffer for this request.
[[nodiscard]] u32* CommandBuffer() {
return cmd_buf.data();
}
/**
* Returns the session through which this request was made. This can be used as a map key to
* access per-client data on services.
*/
[[nodiscard]] Kernel::KServerSession* Session() {
return server_session;
}
/// Populates this context with data from the requesting process/thread.
Result PopulateFromIncomingCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf);
/// Writes data from this context back to the requesting process/thread.
Result WriteToOutgoingCommandBuffer(KThread& requesting_thread);
[[nodiscard]] u32_le GetHipcCommand() const {
return command;
}
[[nodiscard]] u32_le GetTipcCommand() const {
return static_cast<u32_le>(command_header->type.Value()) -
static_cast<u32_le>(IPC::CommandType::TIPC_CommandRegion);
}
[[nodiscard]] u32_le GetCommand() const {
return command_header->IsTipc() ? GetTipcCommand() : GetHipcCommand();
}
[[nodiscard]] bool IsTipc() const {
return command_header->IsTipc();
}
[[nodiscard]] IPC::CommandType GetCommandType() const {
return command_header->type;
}
[[nodiscard]] u64 GetPID() const {
return pid;
}
[[nodiscard]] u32 GetDataPayloadOffset() const {
return data_payload_offset;
}
[[nodiscard]] const std::vector<IPC::BufferDescriptorX>& BufferDescriptorX() const {
return buffer_x_desciptors;
}
[[nodiscard]] const std::vector<IPC::BufferDescriptorABW>& BufferDescriptorA() const {
return buffer_a_desciptors;
}
[[nodiscard]] const std::vector<IPC::BufferDescriptorABW>& BufferDescriptorB() const {
return buffer_b_desciptors;
}
[[nodiscard]] const std::vector<IPC::BufferDescriptorC>& BufferDescriptorC() const {
return buffer_c_desciptors;
}
[[nodiscard]] const IPC::DomainMessageHeader& GetDomainMessageHeader() const {
return domain_message_header.value();
}
[[nodiscard]] bool HasDomainMessageHeader() const {
return domain_message_header.has_value();
}
/// Helper function to get a span of a buffer using the appropriate buffer descriptor
[[nodiscard]] std::span<const u8> ReadBuffer(std::size_t buffer_index = 0) const;
/// Helper function to read a copy of a buffer using the appropriate buffer descriptor
[[nodiscard]] std::vector<u8> ReadBufferCopy(std::size_t buffer_index = 0) const;
/// Helper function to write a buffer using the appropriate buffer descriptor
std::size_t WriteBuffer(const void* buffer, std::size_t size,
std::size_t buffer_index = 0) const;
/// Helper function to write buffer B
std::size_t WriteBufferB(const void* buffer, std::size_t size,
std::size_t buffer_index = 0) const;
/// Helper function to write buffer C
std::size_t WriteBufferC(const void* buffer, std::size_t size,
std::size_t buffer_index = 0) const;
/* Helper function to write a buffer using the appropriate buffer descriptor
*
* @tparam T an arbitrary container that satisfies the
* ContiguousContainer concept in the C++ standard library or a trivially copyable type.
*
* @param data The container/data to write into a buffer.
* @param buffer_index The buffer in particular to write to.
*/
template <typename T, typename = std::enable_if_t<!std::is_pointer_v<T>>>
std::size_t WriteBuffer(const T& data, std::size_t buffer_index = 0) const {
if constexpr (Common::IsContiguousContainer<T>) {
using ContiguousType = typename T::value_type;
static_assert(std::is_trivially_copyable_v<ContiguousType>,
"Container to WriteBuffer must contain trivially copyable objects");
return WriteBuffer(std::data(data), std::size(data) * sizeof(ContiguousType),
buffer_index);
} else {
static_assert(std::is_trivially_copyable_v<T>, "T must be trivially copyable");
return WriteBuffer(&data, sizeof(T), buffer_index);
}
}
/// Helper function to get the size of the input buffer
[[nodiscard]] std::size_t GetReadBufferSize(std::size_t buffer_index = 0) const;
/// Helper function to get the size of the output buffer
[[nodiscard]] std::size_t GetWriteBufferSize(std::size_t buffer_index = 0) const;
/// Helper function to derive the number of elements able to be contained in the read buffer
template <typename T>
[[nodiscard]] std::size_t GetReadBufferNumElements(std::size_t buffer_index = 0) const {
return GetReadBufferSize(buffer_index) / sizeof(T);
}
/// Helper function to derive the number of elements able to be contained in the write buffer
template <typename T>
[[nodiscard]] std::size_t GetWriteBufferNumElements(std::size_t buffer_index = 0) const {
return GetWriteBufferSize(buffer_index) / sizeof(T);
}
/// Helper function to test whether the input buffer at buffer_index can be read
[[nodiscard]] bool CanReadBuffer(std::size_t buffer_index = 0) const;
/// Helper function to test whether the output buffer at buffer_index can be written
[[nodiscard]] bool CanWriteBuffer(std::size_t buffer_index = 0) const;
[[nodiscard]] Handle GetCopyHandle(std::size_t index) const {
return incoming_copy_handles.at(index);
}
[[nodiscard]] Handle GetMoveHandle(std::size_t index) const {
return incoming_move_handles.at(index);
}
void AddMoveObject(KAutoObject* object) {
outgoing_move_objects.emplace_back(object);
}
void AddCopyObject(KAutoObject* object) {
outgoing_copy_objects.emplace_back(object);
}
void AddDomainObject(SessionRequestHandlerPtr object) {
outgoing_domain_objects.emplace_back(std::move(object));
}
template <typename T>
std::shared_ptr<T> GetDomainHandler(std::size_t index) const {
return std::static_pointer_cast<T>(GetManager()->DomainHandler(index).lock());
}
void SetSessionRequestManager(std::weak_ptr<SessionRequestManager> manager_) {
manager = manager_;
}
[[nodiscard]] std::string Description() const;
[[nodiscard]] KThread& GetThread() {
return *thread;
}
[[nodiscard]] std::shared_ptr<SessionRequestManager> GetManager() const {
return manager.lock();
}
bool GetIsDeferred() const {
return is_deferred;
}
void SetIsDeferred(bool is_deferred_ = true) {
is_deferred = is_deferred_;
}
private:
friend class IPC::ResponseBuilder;
void ParseCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf, bool incoming);
std::array<u32, IPC::COMMAND_BUFFER_LENGTH> cmd_buf;
Kernel::KServerSession* server_session{};
KThread* thread;
std::vector<Handle> incoming_move_handles;
std::vector<Handle> incoming_copy_handles;
std::vector<KAutoObject*> outgoing_move_objects;
std::vector<KAutoObject*> outgoing_copy_objects;
std::vector<SessionRequestHandlerPtr> outgoing_domain_objects;
std::optional<IPC::CommandHeader> command_header;
std::optional<IPC::HandleDescriptorHeader> handle_descriptor_header;
std::optional<IPC::DataPayloadHeader> data_payload_header;
std::optional<IPC::DomainMessageHeader> domain_message_header;
std::vector<IPC::BufferDescriptorX> buffer_x_desciptors;
std::vector<IPC::BufferDescriptorABW> buffer_a_desciptors;
std::vector<IPC::BufferDescriptorABW> buffer_b_desciptors;
std::vector<IPC::BufferDescriptorABW> buffer_w_desciptors;
std::vector<IPC::BufferDescriptorC> buffer_c_desciptors;
u32_le command{};
u64 pid{};
u32 write_size{};
u32 data_payload_offset{};
u32 handles_offset{};
u32 domain_offset{};
std::weak_ptr<SessionRequestManager> manager{};
bool is_deferred{false};
KernelCore& kernel;
Core::Memory::Memory& memory;
};
} // namespace Kernel

View File

@ -2,7 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_port.h"
#include "core/hle/kernel/k_scheduler.h"

View File

@ -15,7 +15,6 @@ namespace Kernel {
class KClientSession;
class KernelCore;
class KPort;
class SessionRequestManager;
class KClientPort final : public KSynchronizationObject {
KERNEL_AUTOOBJECT_TRAITS(KClientPort, KSynchronizationObject);

View File

@ -2,7 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/k_session.h"

View File

@ -1,7 +1,6 @@
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_port.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/svc_results.h"

View File

@ -10,8 +10,6 @@
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_process.h"
@ -22,6 +20,8 @@
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/service/hle_ipc.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/memory.h"
namespace Kernel {
@ -281,8 +281,8 @@ Result KServerSession::SendReply(bool is_hle) {
return result;
}
Result KServerSession::ReceiveRequest(std::shared_ptr<HLERequestContext>* out_context,
std::weak_ptr<SessionRequestManager> manager) {
Result KServerSession::ReceiveRequest(std::shared_ptr<Service::HLERequestContext>* out_context,
std::weak_ptr<Service::SessionRequestManager> manager) {
// Lock the session.
KScopedLightLock lk{m_lock};
@ -329,7 +329,8 @@ Result KServerSession::ReceiveRequest(std::shared_ptr<HLERequestContext>* out_co
if (out_context != nullptr) {
// HLE request.
u32* cmd_buf{reinterpret_cast<u32*>(memory.GetPointer(client_message))};
*out_context = std::make_shared<HLERequestContext>(kernel, memory, this, client_thread);
*out_context =
std::make_shared<Service::HLERequestContext>(kernel, memory, this, client_thread);
(*out_context)->SetSessionRequestManager(manager);
(*out_context)
->PopulateFromIncomingCommandBuffer(client_thread->GetOwnerProcess()->GetHandleTable(),

View File

@ -10,18 +10,20 @@
#include <boost/intrusive/list.hpp>
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_session_request.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/result.h"
namespace Service {
class HLERequestContext;
class SessionRequestManager;
} // namespace Service
namespace Kernel {
class HLERequestContext;
class KernelCore;
class KSession;
class SessionRequestManager;
class KThread;
class KServerSession final : public KSynchronizationObject,
@ -52,8 +54,8 @@ public:
/// TODO: flesh these out to match the real kernel
Result OnRequest(KSessionRequest* request);
Result SendReply(bool is_hle = false);
Result ReceiveRequest(std::shared_ptr<HLERequestContext>* out_context = nullptr,
std::weak_ptr<SessionRequestManager> manager = {});
Result ReceiveRequest(std::shared_ptr<Service::HLERequestContext>* out_context = nullptr,
std::weak_ptr<Service::SessionRequestManager> manager = {});
Result SendReplyHLE() {
return SendReply(true);